Типы и конструкции ультразвуковых очистных установок. Электрохимико-механические установки,ультразвуковые установки(УЗУ) Структура условного обозначения

Ультразвуковую очистку выполняют на ультразвуковых установках, включающих, как правило, одну или несколько ванн и ультразвуковой генератор. По технологическому назначению различают установки универсального и специального назначения. Первые применяют для очистки широкой номенклатуры деталей в основном единичного и серийного производства. В массовом производстве используют установки специального назначения, а нередко и автоматизированные агрегаты и поточные линии.

Рисунок 28 – Ванна для ультразвуковой очистки типа УЗВ-0,4

Мощность универсальных ванн колеблется от 0,1 до 10 кВт, а емкость - от 0,5 до 150 л. Небольшие по мощности ванны имеют встроенные в дно пьезокерамические преобразователи, а мощные - несколько магнитострикционных.

Однотипны ультразвуковые настольные ванны УЗУ-0,1; УЗУ-0,25 и УЗУ-0,4. Эти ванны чаще применяют в лабораторных условиях и единичном производстве; для их питания используют полупроводниковые генераторы с выходной мощностью 100, 250 и 400 Вт. Ванны имеют корпус прямоугольной формы и съемную крышку. В дно ванн встроены пьезокерамические преобразователи (тип ПП1-0,1) в количестве от одного до трех в зависимости от мощности ванны. Для загрузки деталей навалом имеются сетчатые корзины. Ванны имеют встроенные в общий корпус отсеки для ополаскивания деталей после очистки.

На рис. 28 показана ультразвуковая настольная очистная ванна типа УЗВ-0,4, работающая с генератором УЗГЗ-0,4. Она имеет металлический звукоизолированный корпус 1 цилиндрической формы и крышку 3, связанную с корпусом шарниром и эксцентриковым зажимом 2 с ручкой. К дну рабочей части ванны, являющейся резонансной мембраной, припаян пакет магнитострикционного преобразователя . Корпус его имеет две трубы для подачи и стока проточной воды, охлаждающей преобразователь. Штуцера этих труб выведены к нижней части корпуса для удобства присоединения к ним шлангов. На корпусе расположен тумблер включения и выключения ультразвуковых колебаний на генераторе при установке его в отдалении от ванны. Здесь же имеется ручка открытия слива моющей жидкости и соответствующий штуцер. Ванна комплектуется корзиной для загрузки очищаемых деталей.

Рисунок 29 – Ванна для ультразвуковой очистки типа УЗВ-18М

Из числа универсальных очистных ванн большей мощности широкое распространение получили ванны типа УЗВ. Ванны этого типа имеют аналогичную конструкцию. На рис. 29 приведена ванна типа УЗВ-18М. Сварной каркас 1 выполнен в звукозащитном исполнении. Он закрыт крышкой 5 с противовесами 4. Подъем и опускание крышки производится вручную ручками 6. В дно 9 рабочей части ванны встроены магнитострикционные преобразователи 8 типа ПМС-6-22 (от одного до четырех в зависимости от мощности ванны). Для отсоса паров моющей жидкости установлены бортовые сборники с выходным патрубком II, который присоединяется к вентиляционной системе цеха. В дно рабочей части вмонтирован кран для слива моющей жидкости; рукоятка 19 крана выведена на лицевую сторону. Слив по трубам 14 и 16 можно производить в бак-отстойник, канализацию или в бак 7, встроенный в ванну. Чтобы исключить возможность переполнения рабочей части жидкостью, имеется дренажная труба.

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

Электрохимико-механические установки,ультразвуковые установки(УЗУ)

В основе данного способа обработки лежит механическое воздействие на материал. Ультразвуковым он называется потому, что частота ударов соответствует диапазону неслышимых звуков (f = 6...10 5 кГц).
Звуковые волны представляют собой механические упругие колебания, которые могут распространяться только в упругой среде.
При распространении звуковой волны в упругой среде материальные частицы совершают упругие колебания около своих положений со скоростью, которая называется колебательной.
Сгущение и разряжение среды в продольной волне характеризуется избыточным, так называемым звуковым давлением.
Скорость распространения звуковой волны зависит от плотности среды, в которой она движется.
Чем жестче и легче материал среды, тем больше скорость. При распространении в материальной среде звуковая волна переносит энергию, которая может использоваться в технологических процессах.
Достоинства ультразвуковой обработки:

Возможность получения акустической энергии различными техническими приемами;
- широкий диапазон применения ультразвука (от размерной обработки до сварки, пайки и так далее);
- простота автоматизации и эксплуатации

Недостатки:

Повышенная стоимость акустической энергии по сравнению с другими видами энергии;
- необходимость изготовления генераторов ультразвуковых колебаний;
- необходимость изготовления специальных инструментов со специальными свойствами и формой.

Ультразвуковые колебания сопровождаются рядом эффектов, которые могут быть использованы как базовые для разработки различных процессов:
- кавитация, т.е. образование в жидкости пузырьков (во время фазы растяжения) и лопание их (во время фазы сжатия); при этом возникают большие местные мгновенные давления, достигающие значений 10 2 Н/м 2 ;
- поглощение ультразвуковых колебаний веществом, в котором часть энергии превращается в тепловую, а часть расходуется на изменение структуры вещества.
Эти эффекты используются для:
- разделения молекул и частиц различной массы в неоднородных суспензиях;
- коагуляции (укрупнения) частиц;
- диспергирования (дробления) вещества и перемешивания его с другими;
- дегазации жидкостей или расплавов зв счет образования всплывающих пузырьков больших размеров.
Элементы УЗУ
Любая УЗУ включает в себя три основных элемента:
- источник ультразвуковых колебаний;
- акустический трансформатор скорости (концентратор);
- детали крепления.
Источники ультразвуковых колебаний могут быть двух видов - механические и электрические.
Механические источники преобразуют механическую энергию, например, скорость движения жидкости или газа.
К ним относятся ультразвуковые сирены и свистки.Электрические источники УЗК преобразуют электрическую энергию в механические упругие колебания соответствующей частоты. Преобразователи бывают электродинамические, магнитострикционные и пьезоэлектрические.
Наибольшее распространение получили магнитострикционные и пьезоэлектрические преобразователи.
Принцип действия магнитострикционных преобразователей основан на продольном магнитострикционном эффекте, который проявляется в изменении длины металлического тела из ферромагнитных материалов (без изменения их объема) под действием магнитного поля.
Магнитострикционный эффект у разных металлов различен. Высокой магнитострикцией обладают никель и пермендюр.
Пакет магнитострикционного преобразователя представляет собой сердечник из тонких пластин, на котором размещена обмотка для возбуждения в нем переменного электромагнитного поля высокой частоты.
При магнитострикционном эффекте знак деформации сердечника не изменяется при изменении направления поля на обратное. Частота изменения деформации в 2 раза больше частоты (f) изменения переменного тока, проходящего по обмотке преобразователя, так как в положительный и отрицательный полупериоды происходит деформация одного знака.
Принцип действия пьезоэлектрических преобразователей основан на способности некоторых веществ изменять свои геометрические размеры (толщину и объем) в электрическом поле. Пьезоэлектрический эффект обратим. Если пластину из пьезоматериала подвергнуть деформации сжатия или растяжения, то на ее гранях появятся электрические заряды. Если пьезоэле-мент поместить в переменное электрическое поле, то он будет деформироваться, возбуждая в окружающей среде ультразвуковые колебания. Колеблющаяся пластинка из пьезоэлектрического материала является электромеханическим преобразователем.
Широкое распространение получили пьезоэлементы на основе титана бария, цирконата-титана свинца (ЦТС).
Акустические трансформаторы скорости (концентраторы продольных упругих колебаний) могут иметь различную форму (рис. 1.4-10) .

Они служат для согласования параметров преобразователя с нагрузкой, для крепления колебательной системы и ввода ультразвуковых колебаний в зону обрабатываемого материала.
Эти устройства представляют собой стержни различного сечения, выполненные из материалов с коррозионной и кавитационной стойкостью, жаростойкостью, стойкостью к агрессивным средам и на истирание.
Концентраторы характеризует коэффициент концентрации колебаний (К кк):

Увеличение амплитуды колебаний торца с малым сечением по сравнению с амплитудой колебаний торца большего сечения объясняется тем, что при одинаковой мощности колебаний во всех сечениях трансформатора скорости интенсивность колебаний малого торца в «K кк » раз больше.

Технологическое использование УЗК

В промышленности ультразвук используется по трем основным направлениям: силовое воздействие на материал, интенсификация и ультразвуковой контроль процессов.
Силовое воздействие на материал применяется для механической обработки твердых и сверхтвердых сплавов, получения стойких эмульсий и т.п.
Наиболее часто применяются две разновидности ультразвуковой обработки на характерных частотах 16.. .30 кГц:
- размерную обработку на станках с применением инструментов,
- очистку в ваннах с жидкой средой.
Основным рабочим механизмом ультразвукового станка является акустический узел
( рис. 1.4-11). Он предназначен для приведения рабочего инструмента в колебательное движение.

Акустический узел получает питание от генератора электрических колебаний (обычно ламповый), к которому подключается обмотка (2)
Главным элементом акустического узла является магнитострикционный (или пьезоэлектрический) преобразователь энергии электрических колебаний в энергию механических упругих колебаний - вибратор (1).
Колебания вибратора, который попеременно удлиняется и укорачивается с ультразвуковой частотой в направлении магнитного поля обмотки, усиливаются концентратором (4), присоединенным к торцу вибратора.
К концентратору крепится стальной инструмент (5) так, чтобы между его торцом и обрабатываемой деталью (6) оставался зазор.
Вибратор помещается в эбонитовый кожух (3), куда подается проточная охлаждающая вода.
Инструмент должен иметь форму заданного сечения отверстия. В пространство между торцом инструмента и обрабатываемой поверхностью детали из сопла (7) подается жидкость с мельчайшими зернами абразивного порошка.
От колеблющегося торца инструмента зерна абразива приобретают большую скорость, ударяются о поверхность детали и выбивают из нее мельчайшую стружку.
Хотя производительность каждого удара ничтожно маяа, производительность установки относительно высока, что обусловлено высокой частотой колебаний инструмента (16...30 кГц) и большим количеством зерен абразива (20... 100 тыс/см3), движущихся одновременно с большим ускорением.
По мере снятия слоев материала производится автоматическая подача инструмента.
Абразивная жидкость подается в зону обработки под давлением и вымывает отходы обработки.
С помощью ультразвуковой технологии можно выполнять такие операции, как прошивка, долбление, сверление, резание, шлифование н другие.
Примером могут быть выпускаемые промышленностью ультразвуковые станки прошивочные (модели 4770,4773А) и универсальные (модели 100А).
Ультразвуковые ванны (рис. 1.4-12) применяются для очистки поверхностей металлических деталей от продуктов коррозии, пленок окислов, минеральных масел и т.п.

Работа ультразвуковой ванны основана на использовании эффекта местных гидравлических ударов, возникающих в жидкости под действием ультразвука.
Принцип действия такой ванны состоит в следующем. Обрабатываемая деталь (1) погружается (подвешивается) в бачок (4), заполненный жидкой моющей средой (2).
Излучателем ультразвуковых колебаний является диафрагма (5), соединенная с магнитострикцноииым вибратором (б) с помошью клеяшего состава (8).
Ванна установлена на подставке (7). Волны ультразвуковых колебаний (3) распространяются в рабочей зоне, где производится обработка.
Наиболее эффективна ультразвуковая очистка при удалении загрязнений из труднодоступных полостей, углублений и каналов небольших размеров.
Кроме того, этим методом удается получить стойкие эмульсии таких несмешивающихся обычными способами жидкостей как вода и масло, ртуть и вода, бензол, вода и другие.
Аппаратура УЗУ сравнительно дорога, поэтому экономически целесообразно применять ультразвуковую очистку небольших по размеру деталей только в условиях массового производства.
Интенсификация технологических процессов .
Ультразвуковые колебания существенно изменяют ход некоторых химических процессов.
Например, полимеризация при определенной силе звука идет более интенсивно. При снижении силы звука возможен обратный процесс - деполимеризация.
Поэтому это свойство используется для управления реакцией полимеризации. Изменяя частоту и интенсивность ультразвуковых колебаний, можно обеспечить требуемую скорость реакции.
В металлургии введение упругих колебаний ультразвуковой частоты в расплавы приводит к существенному измельчению кристаллов и ускорению образования наростов в процессе кристаллизации, уменьшению пористости, повышению механических свойств звтвердевших расплавов и снижению содержания газов в металлах.
Ряд металлов (например, свинец и алюминий) не смешиваются в жидком виде. Наложение же на расплав ультразвуковых колебаний способствует «растворению» одного металла в другом. Ультразвуковой контроль процессов.
С помощью ультразвуковых колебаний можно непрерывно контролировать ход технологического процесса без проведения лабораторных анализов проб.
Для этой цели первоначально устанавливается зависимость параметров звуковой волны от физических свойств среды, а затем по изменению этих параметров после действия на среду с достаточной точностью судят о ее состоянии. Как правило, применяются ультразвуковые колебания небольшой интенсивности.
По изменению энергии звуковой волны можно контролировать состав различных смесей, ие являющихся химическими соединениями. Скорость звука в таких средах ие изменяется, а наличие примесей взвешенного вещества влияет на коэффициент поглощения звуковой энергии. Это дает возможность определить процентное содержание примесей в исходном веществе.
По отражению звуковых волн на границе раздела сред («просвечивание» ультразвуковым лучом) можно определить наличие примесей в монолите и создать приборы ультразвуковой диагностики.

Ультразвуковая установка для тонкого измельчения материалов в водной среде под действием ультразвуковой волны в процессе кавитации.

Ультразвуковая установка предназначена для диспергирования материалов различной степени твердости в жидкой среде до наноразмерности, гомогенизации, пастеризации, эмульгирования, интенсификации электро-химических процессов, активации и т.д.

Описание:

Ультразвуковая установка “Молот” предназначена для диспергирования материалов различной степени твердости в жидкой среде до наноразмерности, гомогенизации, пастеризации, эмульгирования, интенсификации электро-химических процессов, активации и т.д. Ультразвуковая установка применяется в качестве: диспергатора (измельчителя), гомогенизатора, эмульгатора, пастеризатора и т.д.

Является ультразвуковой кавитационной установкой проточного типа. Основные детали и внутренняя обшивка реактора выполнены из кавитационноустойчивого материала.

Благодаря конструкционным особенностям и уникальности генератора ультразвуковых колебаний, обеспечивается одновременность ультразвукового удара во внутреннюю рабочую зону кавитационной камеры всех пьезоэлементов. При соблюдении данных условий силы удара становится достаточно, чтобы разбить до наноразмерного уровня даже самые твердые минеральные вещества, такие как кварцевый песок, барит и т.д. Для более мягких веществ и органических материалов (таких как диатомит, древесные опилки и т.д.) мощность установки изменяется.

Возможен индивидуальный расчет и изготовление ультразвуковой установки, в зависимости от требований к конечному результату. Для каждого отдельного производства возможен дополнительный расчет по технологическим особенностям встраивания установки в существующую производственную линию.

Схема работы установки:


Преимущества:

– отсутствие механического процесса измельчения, трущихся узлов и деталей,

ультразвуковая установка проста в монтаже и эксплуатации,

– ультразвуковая установка позволяет измельчать материалы в жидкой среде до размеров, сопоставимых с размерами молекул (~10 нм),

позволяет измельчать материалы с производительностью до 3 м 3 тонкодисперсной смеси в час,

– уменьшена стоимость линий по производству строительных материалов (исключены затраты на газоснабжение, уменьшены затраты энергопотребления, уменьшены затраты на ремонт и обслуживание),

уменьшена длина производственной линии и занимаемая площадь,

– ускорен технологический процесс,

исключено выгорание части продукта,

– повышен уровень пожаро- и взрывобезопасности объекта,

безопасность (полное отсутствие пыли, вредных веществ),

– сокращено количество обслуживающего персонала,

повышена надежность измельчающего элемента ввиду отсутствия движущихся и трущихся частей и механизмов.

Применение:

измельчение материалов для производства водно-дисперсионных лакокрасочных материалов,

подготовка зерна, опилок в спиртовой промышленности,

пастеризация молока,

экстракция целебных трав,

высокопроизводительное безотходное производство соков, пюре, джемов,

обеззараживание и очистка сточных вод ,

переработка птичьего помета и навоза,

получение баритных буровых растворов,

получение тампонажных растворов,

утилизация радиационных отходов,

извлечение ванадия из южной российской нефти ,

подготовка глины в керамическом производстве,

получение бетона с добавлением барита,

получение огнезащитных покрытий с добавлением барита,

производство автошампуней на основе диоксида титана,

производство керамических связок для абразивных инструментов,

получение охлаждающих жидкостей для двигателей на основе парафина.

Технические характеристики:

Характеристики: Значение:
Масса в полной комплектации, кг не более 28
Энергопотребление установки в комплекте с генератором при производительности 1-2 м3/ч готовой суспензии, кВт/ч. не более 5,5
Процентное соотношение сухого вещества к жидкости до обработки в ультразвуковой установке может достигать показателя 70:30

Основные характеристики установки при обработке материалов (на примере микромраморного кальцита):

Примечание: описание технологии на примере ультразвуковой установки измельчения материалов “Молот”.

автоматизированная установка ультразвуковая
безотходное производство в россии
безотходное производство бизнес
безотходный цикл производства
виды измельчения материалов
виды измельчения реологических материалов
водоугольное топливо
диспергирование материалов
добавление барита
извлечение ванадия
измельчение материала
измельчение реологических материалов
измельчение сыпучих материалов
измельчение твердых материалов
кавитационная установка
кавитационное оборудование
кавитационное оборудование купить
кавитационный метод
машина для измельчения материалов
методы измельчения материалов
методы измельчения твердых материалов
методы пастеризации молока
оборудование для измельчения материалов
оборудование для измельчения твердых материалов
оборудование переработки птичьего помета
основные очистки и обеззараживания очистки сточных вод
очистка и обеззараживание сточных вод
очищение дизельного топлива
пастеризация и нормализация молока
переработка птичьего помета и навоза
подготовка зерна к переработке
подготовка зерна к хранению
принцип действия ультразвуковой установки
производство керамических связок
процессы измельчения твердых материалов
снижение затрат энергии на измельчение материалов
современные технологии безотходного производства
способы измельчения материалов
технология экологически чистых и безотходных производств
тонкое измельчение материалов
ультразвуковая кавитационная установка
ультразвуковая пастеризация молока молот
ультразвуковое диспергирование порошковых материалов
ультразвуковые установки и их применение действие принцип действия области применения
ультразвуковая установка для тонкого измельчения материалов предстерилизационной очистки форсунок медицинских инструментов деталей обработки расходомеров впу цсм предстерилизационная контроля сварки цена купить стоматологическая гинекологическая промывки сканер схема волна датчика узу моечная оператор скалера

Коэффициент востребованности 928

Опросы

Нужна ли нашей стране индустриализация?

  • Да, нужна (90%, 2 486 голос(ов))
  • Нет, не нужна (6%, 178 голос(ов))
  • Не знаю (4%, 77 голос(ов))

Поиск технологий

Установка состоит из лабораторной стойки, ультразвукового генератора, высокоэффективного, высокодобротного магнитострикционного преобразователя и трех волноводов-излучателей (концентраторов) к преобразователю. имеет ступенчатую регулировку выходной мощности, 50%, 75%, 100% номинальной выходной мощности. Регулировка мощности и наличие в комплекте трех различных волноводов-излучателей (с коэффициентом усиления 1:0.5, 1:1 и 1:2) позволяет получить различную амплитуду ультразвуковых колебаний в исследуемых жидкостях и упругих средах, ориентировочно, от 0 до 80 мкм на частоте 22 кГц.

Многолетний опыт изготовления и продаж ультразвукового оборудования подтверждает осознанную необходимость в оснащении всех видов современного высокотехнологичного производства Лабораторными установками.

Получение нано-материалов и нано-структур, внедрение и развитие нано-технологий невозможно без применения ультразвукового оборудования.

С помощью данного ультразвукового оборудования возможно:

  • получение нано-порошков металлов;
  • использование при проведении работ с фуллеренами;
  • исследование протекания ядерных реакций в условиях сильных ультразвуковых полей (холодный термояд);
  • возбуждение сонолюминисценции в жидкостях, в исследовательских и промышленных целях;
  • создание мелкодисперсных нормализованных прямых и обратных эмульсий;
  • озвучивание древесины;
  • возбуждение ультразвуковых колебаний в расплавах металлов для дегазации;
  • и многое, многое другое.

Современные ультразвуковые диспергаторы с цифровыми генераторами серии И10-840

Ультразвуковая установка (диспергатор, гомогенизатор, эмульгатор) И100-840 предназначена для лабораторных исследований воздействия ультразвука на жидкие среды с цифровым управлением, с плавной регулировкой, с цифровым выбором рабочей частоты, с таймером, с возможностью подключения различных по частоте и мощности колебательных систем и записью параметров обработки в энергонезависимую память.

Установка может быть укомплектована ультразвуковыми магнитострикционными или пьезокермическими колебательными системами с рабочей частотой 22 и 44 кГц.

При необходимости возможно комплектование диспергатора колебательными системами на 18, 30, 88 кГц.

Ультразвуковые лабораторные установки (диспергаторы) используются:

  • для лабораторных исследований влияния ультразвуковой кавитации на различные жидкости и помещенные в жидкость образцы;
  • для растворения трудно или мало растворимых веществ и жидкостей в других жидкостях;
  • для проведения испытаний различных жидкостей на кавитационную прочность. Например, для определения стабильности вязкости промышленных масел (см. ГОСТ 6794-75 на масло АМГ-10);
  • для исследований изменения скорости пропитки волокнистых материалов под воздействием ультразвука и для улучшения пропитки волокнистых материалов различными наполнителями;
  • для исключения агрегатирования минеральных частиц при гидросортировке (абразивные порошки, геомодификаторы, природные и искусственные алмазы и т. д.);
  • для ультразвуковой отмывки сложных изделий автомобильной топливной аппаратуры, форсунок и карбюраторов;
  • для исследований на кавитационную прочность деталей машин и механизмов;
  • и в самом простом случае - как высоко интенсивная ультразвуковая моющая ванна. Осадок и отложения на лабораторной посуде и стекле удаляются или растворяются за считанные секунды.

Лабораторная установка SonoStep сочетает в себе ультразвуковую обработку, перемешивание и подачу проб; при этом она имеет компактный дизайн. С ней легко работать, ее можно использовать для подачи обработанных ультразвуком проб на аналитические устройства, например, для измерения размеров частиц.

Ультразвуковая обработка помогает диспергировать агломерированные частицы для их подготовки и анализа дисперсности и эмульсий. Это важно при измерении размера частиц, например, с помощью динамического рассеяния света или дифракцией лазерного излучения.

Эффективно и просто

Рециркуляция стандартной пробы, ultrasonic generator – ультразвуковой генератор, stirrer - мешалка, ultrasonic transducer – ультразвуковой преобразователь, pump - насос, analytic device – аналитический прибор Рециркуляция пробы с помощью SonoStep, ultrasonic generator and transducer – ультразвуковой генератор и преобразователь, motor with pump head – двигатель с насосом, analytic device – аналитический прибор

Применение ультразвука для рециркуляции пробы требует наличия четырёх компонентов: сосуда для перемешивания, ультразвукового генератора и преобразователя (датчика) и насоса. Все эти компоненты соединены между собой шлангами или трубками. Типовая установка показана на схеме (стандартная рециркуляция).

Прибор SonoStep включает в себя источник ультразвука и центробежный насос, находящиеся в стакане, выполненном из нержавеющей стали (см. рис. «рециркуляция пробы с использованием Sonostep»).

Устройство SonoStep соединено с аналитическим прибором.

Последовательная ультразвуковая обработка для получения лучших результатов

Ультразвуковая обработка улучшает точность измерений размеров и морфологии частиц, поскольку SonoStep выполняет три важных функции:

  • циркуляцию

Ультразвук удаляет воздух из жидкости и, тем самым, устраняет мешающее влияние пузырьков на проведение измерений. Он прокачивает объём пробы с регулируемым расходом и рассеивает частицы в жидкости. Мощность ультразвука прикладывается непосредственно под ротором насоса, она обеспечивает распыление агломерированных частиц перед их измерением. Это обеспечивает получение более полного и повторяемого результата.


mob_info