О редуцированном сечении тонкостенных тавровых, уголковых и крестообразных профилей после местной потери устойчивости. Развитие методов расчета деформационно-скоростных режимов горячего редуцирования с натяжением труб повышенной точности п Область допусти

где, р - номер текущей итерации; vt - полная скорость скольжения металла по поверхности инструмента; vn - нормальная скорость движения металла; wn - нормальная скорость движения инструмента; st - напряжение трения;
- Напряжение текучести как функция параметров деформируемого металла, в данной точке; - Среднее напряжение; - Интенсивность скорости деформации; x0 - скорость деформации всестороннего сжатия; Kt - штрафной множитель на скорость скольжения металла по инструменту (уточняется методом итераций) Kn - штрафной множитель на проникновение металла в инструмент; m - условная вязкость металла, уточняется по методу гидродинамических приближений; - Напряжение натяжения или подпора при прокатке; Fn - площадь поперечного сечения конца трубы, к которому приложено натяжения или подпор.
Расчет деформационно-скоростного режима включает распределение по клетях состояния деформаций по диаметру, необходимой величины коэффициента пластического натяжения по состоянию Zобщ, расчет коэффициентов вытяжек, катают диаметров валков и частоты вращения двигателей главного привода с учетом особенностей его конструкции.
Для первых клетей стана, включая первую клеть, что катает, и для последних, размещенных после последней клети, катает, коэффициенты пластического натяжения в них Zср.i меньше необходимого Zобщ. Через такое распределение коэффициентов пластического натяжения по всем клетях стана расчетная толщина стенки на выходе из него больше, чем необходимо по маршруту редуцирования. Чтобы компенсировать недостаточную тянущую способность валков клетей, расположенных в первой и после последней клетей, что катают, надо с помощью итерационного вычисления найти такую ​​величину Zобщ, чтобы расчетная и заданная толщина стенки на выходе из состояния были одинаковыми. Чем больше величина необходимого общего коэффициента пластического натяжения по состоянию Zобщ, тем больше ошибка в его определении без итерационного вычисления.
После того, как итерационным вычислениям рассчитаны коэффициенты переднего и заднего пластического натяжения, толщины стенки трубы на входе и выходе ячеек деформации по клетях редукционного стана, окончательно определяем положение первой и последней клетей, что катают.
Конечно катая диаметр определяют через центральный угол qк.п. между вертикальной осью симметрии ручья валка и линией, проведенной из центра калибра, совпадает с осью прокатки в точку на поверхности ручья калибра, где на его поверхности находится нейтральная линия очага деформации, условно расположена параллельно оси прокатки. Величина угла qк.п., прежде всего, зависит от величины коэффициента заднего Zзад. и переднего Zпер. натяжения, а также коэффициента
вытяжки.
Определение катая диаметра по величине угла qк.п. обычно выполняют для калибра, имеет форму круга с центром в оси прокатки и диаметром, равным среднему диаметру калибра Dср.
Наибольшие погрешности при определении величины катая диаметра без учета фактических геометрических размеров калибра будут для случая, когда условия прокатки определяют его положение или у дна или у реборды калибра. Чем больше реальная форма калибра будет отличаться от принятого в расчетах круга, тем значительнее будет эта погрешность.
Максимально возможный диапазон изменения фактической величины диаметра, катает калибра представляет собой врез ручья валка. Чем большее количество валков образует калибр, тем будет больше относительная погрешность определения катая диаметра без учета фактических геометрических размеров калибра.
С увеличением частичного обжатия диаметра трубы в калибре растет отличие его формы от круглой. Так при увеличении обжатия диаметра трубы от 1 до 10% относительная погрешность в определении величины катая диаметра без учета фактических геометрических размеров калибра увеличивается от 0,7 до 6,3% для двухвалковая, 7,1% - для трехвалковая и 7,4% - для чотирьохвалковои "катая" клети когда по кинематических условиях прокатки катая диаметр расположенный по дну калибра.
Одновременное увеличение одинакового

Ильяшенко А.В. – Доцент кафедры «Строительная механика»
Московского государственного строительного университета,
кандидат технических наук

Исследование несущей способности сжатых упругих тонкостенных стержней, имеющих начальную погибь и претерпевших местную потерю устойчивости, связано с определением редуцированного поперечного сечения стержня. Основные положения, принятые для исследования напряжённо-деформированного состояния в закритической стадии сжатых неидеальных тонкостенных стержней, приведены в работах . В данной статье рассматривается закритическое поведение стержней, которые представляются в виде совокупности совместно работающих элементов – пластинок с начальной погибью, имитирующих работу полок уголковых, тавровых и крестообразных профилей. Это так называемые полки-пластинки с одним упруго защемлённым краем и другим свободным (см.рисунок). В работах такая пластинка относится к типу II.

Было установлено , что разрушающая нагрузка, характеризующая несущую способность стержня, значительно превышает нагрузку Р кр (м) , при которой происходит местная потеря устойчивости несовершенного профиля. Из графиков, представленных в , видно, что деформации продольных волокон по периметру поперечного сечения в закритической стадии становятся крайне неодинаковыми. В волокнах, удалённых от рёбер, деформации сжатия при увеличении нагрузки уменьшаются, а при нагрузках, близких к предельным, из-за резкого искривления этих волокон вследствие начальных погибей и всё возрастающих стрелок продольных полуволн, образовавшихся после местной потери устойчивости, появляются и интенсивно растут деформации растяжения.

Участки поперечного сечения с искривлёнными продольными волокнами сбрасывают напряжения, как бы выключаются из работы стержня, ослабляя эффективное сечение и уменьшая его жёсткость. Итак, несущая способность тонкостенного профиля не ограничивается местной потерей устойчивости. Полная нагрузка, воспринимаемая более жёсткими (менее искривлёнными) участками поперечного сечения, может значительно превосходить величину Р кр (м) .

Получим эффективное, редуцированное сечение, исключив неработающие участки профиля. Для этого используем выражение для функции напряжений Ф k (х,у), описывающей напряжённое состояние k-ой пластинки типа II (см. ).

Перейдём к закритическим напряжениям σ kх (в направлении действия внешней сжимающей силы), определяемым в наиболее неблагоприятном сечении стержня (х=0). Запишем их в общем виде:

σ kx =∂ 2 Ф k (A km ,y, f kj , f koj , β c,d , β c,d,j ,ℓ, s) ∕ ∂ y 2 , (1)

где постоянные интегрирования А km (m=1,2,…,6) и стрелки составляющих приобретённых прогибов f kj (j=1,2) определяются из решения системы разрешающих уравнений . Эта система уравнений включает в себя нелинейные вариационные уравнения и граничные условия, описывающие совместную работу неидеальных пластинок профиля. Стрелки f koj (j=1,2,…,5) составляющих начального прогиба k-й пластинки определяются для каждого типа профиля экспериментально;
ℓ – длина образующейся при местной потере устойчивости полуволны ;
s – ширина пластинки;

β c,d =cs 2 + dℓ 2 ;

β c,d,j = cs 4 + dℓ 2 s 2 + gℓ 4 ;

c, d, j – целые положительные числа.

Приведённую или эффективную ширину редуцированного сечения пластинки-полки (типа II) обозначим через s п. Для её определения выпишем условия перехода от действительного поперечного сечения стержня к редуцированному:

1. Напряжения в продольных волокнах у начальной грани пластинки (при у=0), примыкающей к ребру (см.рисунок), остаются такими же, как и полученные по нелинейной теории (1):

где F 2 kr =f 2 kr +2f k0r f kr .

Для определения напряжения σ k2 =σ k max необходимо подставить в (1) ординату наиболее загруженного продольного волокна, которая находится из условия: ∂σ kx /∂y=0.

2. Сумма внутренних усилий в пластинке при переходе к редуцированному сечению в направлении действия сжимающей силы не меняется:

3. Момент внутренних усилий относительно оси, проходящей через начальную грань (у=0) перпендикулярно плоскости пластинки, остаётся прежним:

Из рисунка очевидно, что

σ ′ k2 = σ k1 + y п (σ k2 -σ k1) / (y п + s п). (5)

Запишем систему уравнений для определения приведённой ширины пластинки s п. Для этого подставим (1) и (5) в (3) и (4):

где α=πs/ℓ ; F kr,ξ =f kr f koξ +f kr f kξ +f kor f kξ ;
r, ξ – целые положительные числа.

Полученная система уравнений (6) и (7) даёт возможность определить приведённую ширину s п каждой из пластинок-полок, составляющих сжатый претерпевший местную потерю устойчивости тонкостенный стержень. Таким образом, действительное поперечное сечение профиля заменили на редуцированное.

Предлагаемая методика представляется полезной как в теоретическом, так и в практическом плане при расчётах на несущую способность сжатых предварительно искривлённых тонкостенных стержней, в которых по эксплуатационным требованиям допустимо местное волнообразование.

Библиографический список
  1. Ильяшенко А.В., Ефимов И.Б. Напряжённо-деформированное состояние после местной потери устойчивости сжатых тонкостенных стержней с учётом начальной погиби // Строительные конструкции и материалы. Защита от коррозии. – Уфа: Тр.ин-та НИИпромстрой, 1981. – С.110-119.
  2. Ильяшенко А.В. К расчёту тонкостенных тавровых, уголковых и крестообразных профилей с начальной погибью // Свайные фундаменты. – Уфа: Сб. науч. тр. Ниипромстроя, 1983. – С. 110-122.
  3. Ильяшенко А.В., Ефимов И.Б. Экспериментальное исследование тонкостенных стежней с искривлёнными пластинчатыми элементами // Организация и производство строительных работ. – М.: Центр.Бюро н.-т. информации Минпромстроя, 1983.

ВВЕДЕНИЕ.

1 СОСТОЯНИЕ ВОПРОСА ПО ТЕОРИИ И ТЕХНОЛОГИИ ПРОФИЛИРОВАНИЯ МНОГОГРАННЫХ ТРУБ БЕЗОПРАВОЧНЫМ ВОЛОЧЕНИЕМ (ЛИТЕРАТУРНЫЙ ОБЗОР).

1.1 Сортамент профильных труб с плоскими гранями и их использование в технике.

1.2 Основные способы производства профильных труб с плоскими гранями.

1.4 Волочильный фасонный инструмент.

1.5 Волочение многогранных винтообразно-закрученных труб.

1.6 Выводы. Цель и задачи исследований.

2 РАЗРАБОТКА МАТЕМАТИЧЕСКОЙ МОДЕЛИ ПРОФИЛИРОВАНИЯ ТРУБ ВОЛОЧЕНИЕМ.

2.1 Основные положения и допущения.

2.2 Описание геометрии очага деформации.

2.3 Описание силовых параметров процесса профилирования.

2.4 Оценка заполняемости углов волоки и утяжки граней профиля.

2.5 Описание алгоритма расчета параметров профилирования.

2.6 Компьютерный анализ силовых условий профилирования квадратных труб безоправочным волочением.

2.7 Выводы.

3 РАСЧЕТ ИНСТРУМЕНТА НА ПРОЧНОСТЬ ДЛЯ ВОЛОЧЕНИЯ ПРОФИЛЬНЫХ ТРУБ.

3.1 Постановка задачи.

3.2 Определение напряженного состояния волоки.

3.3 Построение отображающих функций.

3.3.1 Квадратное отверстие.

3.3.2 Прямоугольное отверстие.

3.3.3 Плоскоовальное отвестие.

3.4 Пример расчета напряженного состояния волоки с квадратным отверстием.

3.5 Пример расчета напряженного состояния волоки с круглым отверстием.

3.6 Анализ полученных результатов.

3.7 Выводы.

4 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПО ПРОФИЛИРОВАНИЮ КВАДРАТНЫХ И ПРЯМОУГОЛЬНЫХ ТРУБ ВОЛОЧЕНИЕМ.

4.1 Методика проведения эксперимента.

4.2 Профилирование квадратной трубы волочением за один переход в одну волоку.

4.3 Профилирование квадратной трубы волочением за один переход с противонатяжением.

4.4 Трехфакторная линейная математическая модель профилирования квадратных труб.

4.5 Определение заполняемости углов волоки и утяжки граней.

4.6 Совершенствование калибровки каналов волок для прямоугольных труб.

4.7 Выводы.

5 ВОЛОЧЕНИЕ ПРОФИЛЬНЫХ ВИНТООБРАЗНО ЗАКРУЧЕННЫХ ТРУБ.

5.1 Выбор технологических параметров волочения с кручением.

5.2 Определение крутящего момента.

5.3 Определение усилия протягивания.

5.4 Экспериментальные исследования.

5.5 Выводы.

Рекомендованный список диссертаций

  • Волочение тонкостенных труб вращающимся инструментом 2009 год, кандидат технических наук Пастушенко, Татьяна Сергеевна

  • Совершенствование технологии безоправочного волочения тонкостенных труб в блок волок с гарантированной толщиной стенки 2005 год, кандидат технических наук Каргин, Борис Владимирович

  • Совершенствование процессов и машин для изготовления холоднопрофилированных труб на основе моделирования очага деформации 2009 год, доктор технических наук Паршин, Сергей Владимирович

  • Моделирование процесса профилирования многогранных труб с целью его совершенствования и выбора параметров стана 2005 год, кандидат технических наук Семенова, Наталья Владимировна

  • Волочение труб из анизотропного упрочняющегося материала 1998 год, кандидат технических наук Черняев, Алексей Владимирович

Введение диссертации (часть автореферата) на тему «Совершенствование процесса профилирования многогранных труб безоправочным волочением»

Актуальность темы. Активное развитие производственной сферы экономики, жесткие требования к экономичности и надежности продукции, а также к эффективности производства требуют применения ресурсосберегающих видов техники и технологии. Для многих отраслей строительной индустрии, машиностроения, приборостроения, радиотехнической промышленности одним из решений является использование труб экономичных видов (теплообменные и радиаторные трубы, волноводы и пр.), что позволяет: увеличить мощность установок, прочность и долговечность конструкций, снизить их металлоемкость, экономить материалы, улучшить внешний вид. Широкая номенклатура и значительный объем потребления профильных труб сделали освоение их производства в России необходимым. В настоящее время основная масса фасонных труб изготавливается в трубоволочильных цехах, так как операции холодной прокатки и волочения достаточно развиты в отечественной промышленности. В этой связи особенно актуально совершенствование действующего производства: разработка и изготовление оснастки, внедрение новых технологий и методов.

Наиболее распространенные виды фасонных труб - многогранные (квадратные, прямоугольные, шестигранные и др.) трубы высокой точности, получаемые безоправочным волочением за один проход.

Актуальность темы диссертации определяется необходимостью повышения качества многогранных труб путем совершенствования процесса их профилирования без оправки.

Целью работы является совершенствование процесса профилирования многогранных труб безоправочным волочением путем разработки методик расчета технологических параметров и геометрии инструмента.

Для достижения поставленной цели необходимо решить следующие задачи:

1. Создать математическую модель профилирования многогранных труб безоправочным волочением для оценки силовых условий с учетом нели6 нейного закона упрочнения, анизотропии свойств и сложной геометрии канала волоки.

2. Определить силовые условия в зависимости от физических, технологических и конструкционных параметров профилирования при безоправоч-ном волочении.

3. Разработать методику оценки заполняемости углов волоки и утяжки граней при волочении многогранных труб.

4. Разработать методику расчета на прочность фасонных волок для определения геометрических параметров инструмента.

5. Разработать методику расчета технологических параметров при одновременном профилировании и кручении.

6. Провести экспериментальные исследования технологических параметров процесса, обеспечивающих высокую точность размеров многогранных труб и проверить адекватность расчета технологических параметров профилирования по математической модели.

Методы исследований. Теоретические исследования базировались на основных положениях и допущениях теории волочения, теории упругости, методе конформных отображений, вычислительной математики.

Экспериментальные исследования проводили в лабораторных условиях с применением методов математического планирования эксперимента на универсальной испытательной машине ЦДМУ-30.

Автор защищает результаты расчета технологических и конструкционных параметров профилирования многогранных труб безоправочным волочением: методику расчета на прочность фасонной волоки с учетом нормальных нагрузок в канале; методику расчета технологических параметров процесса профилирования многогранных труб безоправочным волочением; методику расчета технологических параметров при одновременном профилировании и кручении при безоправочном волочении винтовых тонкостенных многогранных труб; результаты экспериментальных исследований.

Научная новизна. Установлены закономерности изменения силовых условий при профилировании многогранных труб безоправочным волочением с учетом нелинейного закона упрочнения, анизотропии свойств и сложной геометрии канала волоки. Решена задача по определению напряженного состояния фасонной волоки, находящейся под действием нормальных нагрузок в канале. Дана полная запись уравнений напряженно-деформированного состояния при одновременном профилировании и кручении многогранной трубы.

Достоверность результатов исследований подтверждена строгой математической постановкой задач, применением аналитических методов решения задач, современными методами проведения опытов и обработки экспериментальных данных, воспроизводимостью результатов эксперимента, удовлетворительной сходимостью расчетных, экспериментальных данных и результатов практики, соответствия результатов моделирования технологии изготовления и характеристикам готовых многогранных труб.

Практическая ценность работы заключается в следующем:

1. Предложены режимы получения квадратных труб 10x10x1мм из сплава Д1 высокой точности, повышающие выход годного на 5%.

2. Определены размеры фасонных волок, обеспечивающие их работоспособность.

3. Совмещение операций профилирования и кручения сокращает технологический цикл изготовления винтовых многогранных труб.

4. Усовершенствована калибровка канала фасонной волоки для профилирования прямоугольных труб 32x18x2мм.

Апробация работы. Основные положения диссертационной работы доложены и обсуждены на международной научно-технической конференции, посвященной 40-летию Самарского металлургического завода «Новые направления развития производства и потребления алюминия и его сплавов» (Самара: СГАУ, 2000г.); 11 межвузовской конференции «Математическое моделирование и краевые задачи», (Самара: СГТУ, 2001г.); второй международной научно-технической конференции "Металлофизика, механика материалов и процессов деформирования" (Самара: СГАУ, 2004г.); XIV Тупо-левские чтения: международная молодежная научная конференция (Казань: КГТУ, 2006г.); IX Королевские чтения: международная молодежная научная конференция (Самара: СГАУ, 2007г.).

Публикации Материалы, отражающие основное содержание диссертации опубликованы в 11 работах, в том числе в ведущих рецензируемых научных изданиях, определенных Высшей аттестационной комиссией - 4.

Структура и объем работы. Диссертация состоит из основных условных обозначений, введения, пяти глав, списка литературы и приложения. Работа изложена на 155 страницах машинописного текста, включая 74 рисунка, 14 таблиц, библиографию из 114 наименований и приложение.

Автор выражает благодарность коллективу кафедры обработки металлов давлением за содействие, а также научному руководителю, профессору кафедры, д.т.н. В.Р. Каргину за ценные замечания и практическую помощь в работе.

Похожие диссертационные работы по специальности «Технологии и машины обработки давлением», 05.03.05 шифр ВАК

  • Совершенствование технологии и оборудования для производства капиллярных труб из нержавеющей стали 1984 год, кандидат технических наук Трубицин, Александр Филиппович

  • Совершенствование технологии сборки волочением составных труб сложных поперечных сечений с заданным уровнем остаточных напряжений 2002 год, кандидат технических наук Федоров, Михаил Васильевич

  • Совершенствование технологии и конструкции волок для изготовления шестигранных профилей на основе моделирования в системе "заготовка-инструмент" 2012 год, кандидат технических наук Малаканов, Сергей Александрович

  • Исследование моделей напряженно-деформированного состояния металла при волочении труб и разработка методики определения силовых параметров волочения на самоустанавливающейся оправке 2007 год, кандидат технических наук Малевич, Николай Александрович

  • Совершенствование оборудования, инструмента и технологических средств для волочения высококачественных прямошовных труб 2002 год, кандидат технических наук Манохина, Наталия Григорьевна

Заключение диссертации по теме «Технологии и машины обработки давлением», Шокова, Екатерина Викторовна

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ ПО РАБОТЕ

1. Из анализа научно- технической литературы следует, что одним из рациональных и производительных процессов изготовления тонкостенных многогранных труб (квадратных, прямоугольных, шестигранных, восьмигранных) является процесс безоправочного волочения.

2. Разработана математическая модель процесса профилирования многогранных труб безоправочным волочением, позволяющая определять силовые условия с учетом нелинейного закона упрочнения, анизотропии свойств материала трубы и сложной геометрии канала волоки. Модель реализована в среде программирования Delphi 7.0.

3. С помощью математической модели установлено количественное влияние физических, технологических и конструкционных факторов на силовые параметры процесса профилирования многогранных труб безоправочным волочением.

4. Разработаны методики оценки заполняемости углов волоки и утяжки граней при безоправочном волочении многогранных труб.

5. Разработана методика расчета на прочность фасонных волок с учетом нормальных нагрузок в канале, основанная на функции напряжений Эри, методе конформных отображений и третьей теории прочности.

6. Экспериментально построена трехфакторная математическая модель профилирования квадратных труб, что позволяет выбрать технологические параметры, обеспечивающие точность геометрии получаемых труб.

7. Разработана и доведена до инженерного уровня методика расчета технологических параметров при одновременном профилировании и скручивании многогранных труб безоправочным волочением.

8. Экспериментальные исследования процесса профилирования многогранных труб безоправочным волочением показали удовлетворительную сходимость результатов теоретического анализа с экспериментальными данными.

Список литературы диссертационного исследования кандидат технических наук Шокова, Екатерина Викторовна, 2008 год

1. A.c. 1045977 СССР, МКИ3 В21СЗ/02. Инструмент для волочения тонкостенных фасонных труб Текст. / В.Н. Ермаков, Г.П. Моисеев, A.B. Сунцов и др. (СССР). № 3413820; заявл. 31.03.82; опубл. 07.10.83, Бюл. №37. - Зс.

2. A.c. 1132997 СССР, МКИ3 В21СЗ/00. Составная волока для волочения многогранных профилей с четным числом граней Текст. / В.И. Ребрин, A.A. Павлов, Э.В. Никулин (СССР). -№ 3643364/22-02; заявл. 16.09.83; опубл. 07.01.85, Бюл. №1. -4с.

3. A.c. 1197756 СССР, МКИ4В21С37/25. Способ изготовления прямоугольных труб Текст. / П.Н. Калинушкин, В.Б. Фурманов и др. (СССР). № 3783222; заявл.24.08.84; опубл. 15.12.85, Бюл. №46. - 6с.

4. A.c. 130481 СССР, МКИ 7с5. Устройство для скручивания некруглых профилей волочением Текст. / В.Л. Колмогоров, Г.М. Моисеев, Ю.Н. Шакмаев и др. (СССР). № 640189; заявл. 02.10.59; опубл. 1960, Бюл. №15. -2с.

5. A.c. 1417952 СССР, МКИ4В21С37/15. Способ изготовления профильных многогранных труб Текст. / A.B. Юков, A.A. Шкуренко и др. (СССР). № 4209832; заявл. 09.01.87; опубл. 23.08.88, Бюл. №31. - 5с.

6. A.c. 1438875 СССР, МКИ3 В21С37/15. Способ изготовления прямоугольных труб Текст. / А.Г. Михайлов, Л.Б. Маслан, В.П. Бузин и др. (СССР). № 4252699/27-27; заявл. 28.05.87; опубл. 23.11.88, Бюл. №43. -4с.

7. A.c. 1438876 СССР, МКИ3 В21С37/15. Устройство для перепрофилирования круглых труб в прямоугольные Текст. / А.Г. Михайлов, Л.Б. Маслан, В.П. Бузин и др. (СССР). № 4258624/27-27; заявл. 09.06.87; опубл. 23.11.88, Бюл. №43. -Зс.

8. A.c. 145522 СССР МКИ 7Ь410. Фильер для волочения труб Текст./Э.В.

9. Кущ, B.K. Иванов (СССР).-№ 741262/22; заявл. 10.08.61; опубл. 1962, Бюл.№6. -Зс.

10. A.c. 1463367 СССР, МКИ4 В21С37/15. Способ изготовления многогранных труб Текст. / В.В. Яковлев, В.А. Шуринов, А.И.Павлов и В.А. Белявин (СССР). № 4250068/23-02; заявл. 13.04.87; опубл. 07.03.89, Бюл. №9. -2с.

11. A.c. 590029 СССР, МКИ2В21СЗ/00. Волока для волочения тонкостенных многогранных профилей Текст. / B.JI. Дылдин, В.А. Алешин, Г.П. Моисеев и др. (СССР). № 2317518/22-02; заявл. 30.01.76; опубл. 30.01.78, Бюл. №4. -Зс.

12. A.c. 604603 СССР, МКИ2 В21СЗ/00. Волока для волочения прямоугольной проволоки Текст. / JI.C. Ватрушин, И.Ш. Берин, A.JI. Чечурин (СССР). -№ 2379495/22-02; заявл. 05.07.76; опубл.30.04.78, Бюл.№ 16. 2 с.

13. A.c. 621418 СССР, МКИ2 В21СЗ/00. Инструмент для волочения многогранных труб с четным числом граней Текст. / Г.А. Савин, В.И. Панченко, В.К. Сидоренко, Л.М. Шлосберг (СССР). № 2468244/22-02; заявл. 29.03.77; опубл. 30.08.78, Бюл. №32. -2с.

14. A.c. 667266 СССР, МКИ2 В21СЗ/02. Волока Текст. / A.A. Фотов, В.Н. Дуев, Г.П. Моисеев, В.М. Ермаков, Ю.Г. Хороших (СССР). № 2575030/22-02; заявл. 01.02.78; опубл. 15.06.79, Бюл. №22, -4с.

15. A.c. 827208 СССР, МКИ3 В21СЗ/08. Устройство для изготовления профильных труб Текст. / И.А. Ляшенко, Г.П. Мотсеев, С.М. Подоскин и др. (СССР). № 2789420/22-02; заявл.29.06.79; опубл. 07.05.81, Бюл. №17. - Зс.

16. A.c. 854488 СССР, МКИ3 В21СЗ/02. Волочильный инструмент Текст./

17. С.П. Панасенко (СССР). № 2841702/22-02; заявл. 23.11.79; опубл. 15.08.81, Бюл. №30. -2с.

18. A.c. 856605 СССР, МКИ3 В21СЗ/02. Волока для волочения профилей Текст. / Ю.С. Зыков, А.Г. Васильев, A.A. Кочетков (СССР). №2798564/22-02; заявл. 19.07.79; опубл. 23.08.81, Бюл. №31. -Зс.

19. A.c. 940965 СССР, МКИ3 В21СЗ/02. Инструмент для изготовления профильных поверхностей Текст. / И.А. Савельев, Ю.С. Воскресенский, А.Д. Осма-нис (СССР).- № 3002612; заявл. 06.11.80; опубл. 07.07.82, Бюл. №25. Зс.

20. Адлер, Ю.П. Планирование эксперимента при поиске оптимальных условий Текст./ Ю.П. Адлер, Е.В. Маркова, Ю.В. Грановский М.: Наука, 1971. - 283с.

21. Алыневский, JI.E. Тяговые усилия при холодном волочении труб Текст./ JI.E. Альшевский. М.: Металлургиздат, 1952.-124с.

22. Амензаде, Ю.А. Теория упругости Текст./ Ю.А. Амензаде. М.: Высшая школа, 1971.-288с.

23. Аргунов, В.Н. Калибрование фасонных профилей Текст./ В.Н. Аргунов, М.З. Ерманок. М.: Металлургия, 1989.-206с.

24. Арышенский, Ю.М. Получение рациональной анизотропии в листах Текст./ Ю.М. Арышенский, Ф.В. Гречников, В.Ю. Арышенский. М.: Металлургия, 1987-141с.

25. Арышенский, Ю.М.Теория и расчеты пластического формоизменения анизотропных материалов Текст./ Ю.М. Арышенский, Ф.В. Гречников.- М.: Металлургия, 1990.-304с.

26. Биск, М.Б. Рациональная технология изготовления трубоволочильного инструмента Текст./ М.Б. Биск-М.: Металлургия, 1968.-141 с.

27. Вдовин, С.И. Методы расчета и проектирования на ЭВМ процессов штамповки листов и профильных заготовок Текст./ С.И. Вдовин - М.: Машиностроение, 1988.-160с.

28. Воробьев, Д.Н. Калибровка инструмента для волочения прямоугольных труб Текст./ Д.Н. Воробьев Д.Н., В.Р. Каргин, И.И. Кузнецова// Технология легких сплавов. -1989. -№. -С.36-39.

29. Выдрин, В.Н. Производство фасонных профилей высокой точности Текст./ В.Н. Выдрин и др. -М.: Металлургия, 1977.-184с.

30. Громов, Н.П. Теория обработки металлов давлением Текст./Н.П. Громов -М.: Металлургия, 1967.-340с.

31. Губкин, С.И. Критика существующих методов расчета рабочих напряжений при ОМД /С.И. Губкин// Инженерные методы расчетов технологических процессов ОМД. -М.: Машгиз, 1957. С.34-46.

32. Гуляев, Г.И. Устойчивость поперечного сечения трубы при редуцировании Текст./ Г.И. Гуляев, П.Н. Ившин, В.К. Янович // Теория и практика редуцирования труб. С. 103-109.

33. Гуляев, Ю.Г. Математическое моделирование процессов ОМД Текст./ Ю.Г. Гуляев, С.А. Чукмасов, A.B. Губинский. Киев: Наук. Думка, 1986. -240с.

34. Гуляев, Ю.Г.Повышение точности и качества труб Текст./ Ю.Г. Гуляев, М.З. Володарский, О.И. Лев и др.- М.: Металлургия, 1992.-238с.

35. Гун, Г.Я. Теоретические основы обработки металлов давлением Текст./ Г.Я. Гун. М.: Металлургия, 1980. - 456с.

36. Гун, Г.Я. Пластическое формоизменение металлов Текст./ Г.Я. Гун, П.И. Полухин, Б.А. Прудковский. М.: Металлургия, 1968. -416с.

37. Данченко, В.Н. Производство профильных труб Текст./ В.Н. Данченко,

38. В.А. Сергеев, Э.В. Никулин. М.: Интермет Инжиниринг, 2003. -224с.

39. Днестровский, Н.З. Волочение цветных металлов Текст./ Н.З. Днестровский. М.: Гос. науч.-техн. изд. лит. по ч. и цв. металлургии, 1954. - 270с.

40. Дорохов, А.И. Изменение периметра при волочении фасонных труб Текст./ А.И. Дорохов// Бюл. научно-техн. информации ВНИТИ. М.: Металлург-издат, 1959. - № 6-7. - С.89-94.

41. Дорохов, А.И. Определение диаметра исходной заготовки для безопра-вочного волочения и прокатки прямоугольных, треугольных и шестигранных труб Текст./ А.И. Дорохов, В.И. Шафир// Производство труб / ВНИТИ. М., 1969. -Вып.21. - С. 61-63.

42. Дорохов, А.И. Осевые напряжения при волочении фасонных труб без оправки Текст./ А.И. Дорохов// Тр. УкрНИТИ. М.: Металлугиздат, 1959. -Вып.1. - С.156-161.

43. Дорохов, А.И. Перспективы производства холоднодеформированных профильных труб и основы современной технологии их изготовления Текст./ А.И. Дорохов, В.И. Ребрин, А.П. Усенко// Трубы экономичных видов: М.: Металлургия, 1982. -С. 31-36.

44. Дорохов, А.И. Рациональная калибровка валков многоклетьевых станов для производства труб прямоугольного сечения Текст./ А.И. Дорохов, П.В. Сав-кин, A.B. Колпаковский //Технический прогресс в трубном производстве. М.: Металлургия, 1965.-С. 186-195.

45. Емельяненко, П.Т. Трубопрокатное и трубопрофильное производство Текст./ П.Т. Емельяненко, A.A. Шевченко, С.И. Борисов. М.: Металлургиздат, 1954.-496с.

46. Ерманок, М.З. Прессование панелей из алюминиевых сплавов. М.: Металлургия. - 1974. -232с.

47. Ерманок, М.З. Применение безоправочного волочения при производствеч 1 "труб Текст./ М.З. Ерманок. М.: Цветметинформация, 1965. - 101с.

48. Ерманок, М.З. Развитие теории волочения Текст./ М.З. Ерманок // Цветные металлы. -1986. №9.- С. 81-83.

49. Ерманок, М.З. Рациональная, технология производства прямоугольных труб из алюминия Текст./ М.З. Ерманок М.З., В.Ф. Клейменов. // Цветные металлы. 1957. - №5. - С.85-90.

50. Зыков, Ю.С. Оптимальное соотношение деформаций при волочении прямоугольных профилей Текст./ Ю.С. Зыков, А.Г. Васильев, A.A. Кочетков // Цветные металлы. 1981. - №11. -С.46-47.

51. Зыков, Ю.С. Влияние профиля волочильного канала на усилие волочения Текст./Ю.С. Зыков//Известия вузов. Черная металлургия. 1993. -№2. - С.27-29.

52. Зыков, Ю.С. Исследование комбинированной формы продольного профиля рабочей зоны волоки Текст./ Ю.С. Зыков// Металлургия и коксохимия: Обработка металлов давлением. - Киев: Техника, 1982. - Вып.78. С. 107-115.

53. Зыков, Ю.С. Оптимальные параметры волочения прямоугольных профилей Текст./ Ю.С. Зыков // Цветные мегаллы. 1994. - №5. - С.47-49. .

54. Зыков, Ю.С. Оптимальные параметры процесса волочения прямоугольного профиля Текст./ Ю.С. Зыков // Цветные металлы. 1986. - №2. - С. 71-74.

55. Зыков, Ю.С. Оптимальные углы волочения упрочняющегося металла Текст./ Ю.С. Зыков.// Известия вузов. 4M. 1990. - №4. - С.27-29.

56. Ильюшин, A.A. Пластичность. Часть первая. Упруго-пластические деформации Текст./ A.A. Ильюшин. -М.: МГУ, 2004. -376 с.

57. Каргин, В.Р. Анализ безоправочного волочения тонкостенных труб с противонатяжением Текст./ В.Р. Каргин, Е.В. Шокова, Б.В. Каргин // Вестник СГАУ. Самара: СГАУ, 2003. - №1. - С.82-85.

58. Каргин, В.Р. Введение в специальность обработка металлов давлением

59. Текст.: учебное пособие/ В.Р. Каргин, Е.В. Шокова. Самара: СГАУ, 2003. - 170с.

60. Каргин, В.Р. Волочение винтовых труб Текст./ В.Р. Каргин // Цветные металлы. -1989. №2. - С.102-105.

61. Каргин, В.Р. Основы инженерного эксперимента Текст.: учебное пособие / В.Р. Каргин, В.М. Зайцев. Самара: СГАУ, 2001. - 86с.

62. Каргин, В.Р. Расчет инструмента для волочения квадратных профилей и труб Текст./ В.Р. Каргин, М.В.Федоров, Е.В. Шокова // Известия Самарского научного центра РАН. 2001. - №2. - Т.З. - С.23 8-240.

63. Каргин, В.Р. Расчет утолщения стенки трубы при безоправочном волочении Текст./ В.Р. Каргин, Б.В. Каргин, Е.В. Шокова// Заготовительные производства в машиностроении. 2004. -№1. -С.44-46.

64. Касаткин, Н.И. Исследование процесса профилирования прямоугольных труб Текст./ Н.И. Касаткин, Т.Н. Хонина, И.В. Комкова, М.П. Панова / Исследование процессов обработки цветных металлов давлением. - М.: Металлургия, 1974. Вып. 44. - С. 107-111.

65. Кириченко, А.Н. Анализ экономичности различных способов производства профильных труб с постоянной толщиной стенки по периметру Текст./ А.Н. Кириченко, А.И. Губин, Г.И. Денисова, Н.К. Худякова// Трубы экономичных видов. -М., 1982. -С. 31-36.

66. Клейменов, В.Ф. Выбор заготовки и расчет инструмента для волочения прямоугольных труб из алюминиевых сплавов Текст./ В.Ф. Клейменов, Р.И. Муратов, М.И. Эрлих // Технология легких сплавов.-1979.- №6.- С.41-44.

67. Колмогоров, В.Л. Инструмент для волочения Текст./ В.Л. Колмогоров, С.И. Орлов, В.Ю. Шевляков. -М.: Металлургия, 1992. -144с.

68. Колмогоров, B.JI. Напряжения. Деформации. Разрушение Текст./ B.JT. Колмогоров. М.: Металлургия, 1970. - 229с.

69. Колмогоров, B.JI. Технологические задачи волочения и прессования Текст.: учебное пособие/ B.JI. Колмогоров. -Свердловск: УПИ, 1976. -Вып.10. -81с.

70. Коппенфельс, В. Практика конформных отображений Текст. / В. Коп-пенфельс, Ф. Штальман. М.: ИЛ, 1963. - 406с.

71. Кофф, З.А. Холодная прокатка труб Текст. / З.А. Кофф, П.М. Соловейчик, В.А. Алешин и др. Свердловск: Металлургиздат, 1962. - 432с.

72. Крупман, Ю.Г. Современное состояние мирового производства труб Текст./ Ю.Г. Крупман, J1.C. Ляховецкий, O.A. Семенов. М.: Металлургия, 1992. -81с.

73. Леванов, А.Н. Контактное трение в процессах ОМД Текст. ЛА.Н. Лева-нов, В.Л. Колмагоров, С.Л. Буркин и др. М.: Металлургия, 1976. - 416с.

74. Левитанский, М.Д. Расчет технико-экономических нормативов производства труб и профилей из алюминиевых сплавов на персональных ЭВМ Текст./ М.Д. Левитанский, Е.Б. Маковская, Р.П. Назарова// Цветные металлы. -19.92. -№2. -С.10-11.

75. Лысов, М.Н. Теория и расчет процессов изготовления деталей методами гибки Текст./ М.Н. Лысов М.: Машиностроение, 1966. - 236с.

76. Мусхелишвили, Н.И. Некоторые основные задачи математической теории упругости Текст./ Н.И. Мусхелишвили. М.: Наука, 1966. -707с.

77. Осадчий, В.Я. Исследование силовых параметров профилирования трубв волоках и роликовых калибрах Текст./ В.Я. Осадчий, С.А. Степанцов// Сталь. -1970. -№8.-С.732.

78. Осадчий, В.Я. Особенности деформации при изготовлении профильных труб прямоугольного и переменного сечений Текст./ В.Я. Осадчий, С.А. Степанцов // Сталь. 1970. - №8. - С.712.

79. Осадчий, В.Я. Расчет напряжений и усилий при волочении труб Текст./

80. В.Я. Осадчий, A.JI. Воронцов, С.М Карпов// Производство проката. 2001. - №10.- С.8-12.

81. Осадчий, С.И. Напряженно-деформиро-ванное состояние при профили-рованииТекст./ В.Я. Осадчий, С.А. Гетия, С.А. Степанцов // Известия вузов. Черная металлургия. 1984. -№9. -С.66-69.

82. Паршин, B.C. Основы системного совершенствования процессов и станов холодного волочения труб Текст./ B.C. Паршин. Красноярск: Изд-во Крас-нояр. ун-та, 1986. - 192с.

83. Паршин, B.C. Холодное волочение труб Текст./ B.C. Паршин, A.A. Фотов, В.А. Алешин. М.: Металлургия, 1979. - 240с.

84. Перлин, И.Л. Теория волочения Текст./ И.Л. Перлин, М.З. Ерманок. -М.: Металлургия, 1971.- 448с.

85. Перлин, П.И. Контейнеры для плоских слитков Текст./ П.И. Перлин, Л.Ф. Толченова //Сб. тр. ВНИИметмаш. ОНТИ ВНИИметмаш, 1960. - №1. -С.136-154.

86. Перлин, П.И. Метод расчета контейнеров для прессования изплоского слитка Текст./ П.И. Перлин// Вестник машиностроения 1959. - №5. - С.57-58.

87. Попов, Е.А. Основы теории листовой штамповки Текст. / Е.А.Попов. -М.: Машиностроение, 1977. 278с.

88. Потапов, И.Н. Теория трубного производства Текст./ И.Н. Потапов, А.П. Коликов, В.М. Друян и др. М.: Металлургия, 1991. - 406с.

89. Равин, А.Н. Формообразующий инструмент для прессования и волочения профилей Текст./ А.Н. Равин, Э.Ш. Суходрев, Л.Р. Дудецкая, В.Л. Щербанюк.- Минск: Наука и техника, 1988. 232с.

90. Рахтмайер, Р.Д. Разностные методы решения краевых задач Текст./ Р.Д. Рахтмайер. М.: Мир, 1972. - 418с!

91. Савин, Г.А. Волочение труб Текст./ Г.А. Савин. М.: Металлургия, 1993.-336с.

92. Савин, Г.Н. Распределение напряжений около отверстий Текст./ Г.Н.

93. Савин. Киев: Наукова думка, 1968. - 887с.

94. Сегерлинд, JI. Применение МКЭ Текст./ JI. Сегерлинд. М.: Мир, 1977. - 349с.

95. Смирнов-Аляев, Г.А. Осесимметричная задача теории пластического течения при обжатии, раздаче и волочении труб Текст./ Г.А. Смирнов-Аляев, Г.Я. Гун // Известия вузов. Черная металлургия. 1961. - №1. - С. 87.

96. Сторожев, М.В. Теория обработки металлов давлением Текст./ М.В. Сторожев, Е.А. Попов. М.: Машиностроение, 1977. -432с.

97. Тимошенко, С.П. Сопротивление материалов Текст./С.П. Тимошенко - М.: Наука, 1965. Т. 1,2.-480с.

98. Тимошенко, С.П. Устойчивость упругих систем Текст./С.П. Тимошенко. М.: ГИТТЛ, 1955. - 568с.

99. Трусов, П.В. Исследование процесса профилирования желобчатых труб Текст./ П.В. Трусов, В.Ю. Столбов, И.А. Крон//Обработка металлов давлением. -Свердловск, 1981. №8. - С.69-73.

100. Хукен, В. Подготовка труб к волочению, способы волочения и оборудование, применяемое при волочении Текст./ В. Хукен // Производство труб. Дюссельдорф, 1975. Пер. с нем. М.: Металлургиздат, 1980. - 286с.

101. Шевакин, Ю.Ф. Вычислительные машины в производстве труб Текст./ Ю.Ф. Шевакин, A.M. Рытиков. М.: Металлургия, 1972. -240с.

102. Шевакин, Ю.Ф. Калибровка инструмента для волочения прямоугольных труб Текст./ Ю.Ф. Шевакин, Н.И. Касаткин// Исследование процессов обработки давлением цветных металлов. -М.: Металлургия, 1971. Вып. №34. - С.140-145.

103. Шевакин, Ю.Ф. Производство труб Текст./ Ю.Ф. Шевакин, А.З. Глей-берг. М.: Металлургия, 1968. - 440с.

104. Шевакин, Ю.Ф. Производство труб из цветных металлов Текст./ Ю.Ф. Шевакин, A.M. Рытиков, Ф.С. Сейдалиев М.: Металлургиздат, 1963. - 355с.

105. Шевакин, Ю.Ф., Рытиков A.M. Повышение эффективности производства труб из цветных металлов Текст./ Ю.Ф. Шевакин, A.M. Рытиков. М.: Металлургия, 1968.-240с.

106. Шокова, Е.В. Калибровка инструмента для волочения прямоугольных труб Текст./ Е.В. Шокова// XIV Туполевские чтения: международная молодежная научная конференция, Казанский гос. техн. ун-т. Казань, 2007. - Том 1. - С. 102103.

107. Шурупов, А.К., Фрейберг М.А. Производство труб экономичных профилей Текст./А.К. Шурупов, М.А.Фрейберг.-Свердловск:Металлургиздат, 1963-296с.

108. Яковлев, В.В. Волочение прямоугольных труб повышенной точности Текст./ В.В. Яковлев, Б.А. Смельницкий, В.А. Балявин и др. //Сталь.-1981.-№6-С.58.

109. Яковлев, В.В. Контактные напряжения при безоправочном волочении труб. Текст./ В.В. Яковлев, В.В. Остряков // Сб.: Производство бесшовных труб. -М.: Металлургия, 1975. -№ 3. -С.108-112.

110. Яковлев, В.В., Волочение прямоугольных труб на подвижной оправке Текст./ В.В. Яковлев, В.А. Шуринов, В.А. Балявин; ВНИТИ. Днепропетровск, 1985. - 6с. - Деп. в Черметинформации 13.05.1985, № 2847.

111. Automatische fertingund vou profiliohren Becker H., Brockhoff H., "Blech Rohre Profile". 1985. -№32. -C.508-509.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания. В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.

3.2 Расчет таблицы прокатки

Основной принцип построения технологического процесса в современных установках заключается в получении на непрерывном стане труб одного постоянного диаметра, что позволяет использовать заготовку и гильзу также постоянного диаметра. Получение труб требуемого диаметра обеспечивается редуцированием. Такая система работы значительно облегчает и упрощает настройку станов, снижает парк инструмента и, главное, позволяет сохранять высокую производительность всего агрегата даже при прокатке труб минимального (после редуцирования) диаметра.

Таблицу прокатки рассчитываем против хода прокатки по методике изложенной в . Наружный диаметр трубы после редуцирования определяется размерами последней пары валков.

D p 3 =(1,010..1,015) * D o =1,01 * 33,7=34 мм

где D p -диаметр готовой трубы после редукционного стана.

Толщина стенки после непрерывного и редукционного станов должна быть равна толщине стенки готовой трубы, т.е. S н =Sp=S o =3,2 мм.

Поскольку после непрерывного стана выходит труба одного диаметра, то принимаем D н =94 мм. В непрерывных станах калибровка валков обеспечивает получение в последних парах валков внутреннего диаметра трубы больше диаметра оправки на 1-2 мм, так что диаметр оправки будет равен:

Н =d н -(1..2)=D н -2S н -2=94-2*3,2-2=85,6 мм.

Принимаем диаметр оправок равным 85 мм.

Внутренний диаметр гильзы должен обеспечивать свободное введение оправки и берется на 5-10 мм больше диаметра оправки

d г = н +(5..10)=85+10=95 мм.

Стенку гильзы принимаем:

S г =S н +(11..14)=3,2+11,8=15 мм.

Наружный диаметр гильз определяем исходя из величины внутреннего диаметра и толщины стенки:

D г =d г +2S г =95+2*15=125 мм.

Диаметр используемой заготовки D з =120 мм.

Диаметр оправки прошивного стана выбирается с учетом величины раскатки, т.е. подъема внутреннего диаметра гильзы, составляющего от 3% до 7% от внутреннего диаметра:

П =(0,92…0,97)d г =0,93*95=88 мм.

Коэффициенты вытяжки для прошивного, непрерывного и редукционного станов определяем по формулам:

,

Общий коэффициент вытяжки составляет:

Аналогичным образом рассчитана таблица прокатки для труб размером 48,3×4,0 мм и 60,3×5,0мм.

Таблица прокатки представлена в табл. 3.1.

Таблица 3.1 - Таблица прокатки ТПА-80

Размер готовых труб, мм

Диаметр заготовки, мм

Прошивной стан

Непрерывный стан

Редукционный стан

Общий коэффициент вытяжки

Наружный диаметр

Толщина стенки

Размер гильзы, мм

Диаметр оправки, мм

Коэффициент вытяжки

Размеры труб, мм

Диаметр оправки, мм

Коэффициент вытяжки

Размер труб, мм

Число клетей

Коэффициент вытяжки

Толщина стенки

Толщина стенки

Толщина стенки

3.3 Расчет калибровки валков редукционного стана

Калибровка валков является важной составной частью расчета режима работы стана. Она в значительной мере определяет качество труб, стойкость инструмента, распределение нагрузок в рабочих клетях и приводе.

Расчет калибровки валков включает:

    распределение частных деформаций в клетях стана и подсчет средних диаметров калибров;

    определение размеров калибров валков.

3.3.1 Распределение частных деформаций

По характеру изменения частных деформаций клети редукционного стана могут быть разделены на три группы: головную в начале стана, в которой обжатия интенсивно увеличиваются по ходу прокатки; калибрующую (в конце стана), в которой деформации уменьшаются до минимального значения, и группу клетей между ними (среднюю), в которой частные деформации максимальны или близки к ним.

При прокатке труб с натяжением величины частных деформаций принимают исходя из условия устойчивости профиля трубы при величине пластического натяжения обеспечивающего получение трубы заданного размера.

Коэффициент общего пластического натяжения можно определить по формуле :

,

где
- осевая и тангенциальная деформации взятые в логарифмическом виде; Т- величина определяемая в случае трехвалкового калибра по формуле

где (S/D) cp - среднее отношение толщины стенки к диаметру за период деформации трубы в стане; k-коэффициент учитывающий изменение степени толстостенности трубы.

,

,

где m– величина общей деформации трубы по диаметру.

.

Величина критического частного обжатия при таком коэффициенте пластического натяжения, согласно , может достигать 6% во второй клети, 7,5% в третьей клети и 10% в четвертой клети. В первой клети рекомендуется принимать в пределах 2,5–3%. Однако для обеспечения устойчивого захвата величину обжатия как правило снижают.

В предчистовых и чистовых клетях стана обжатие также снижают, но для снижения нагрузок на валки и повышения точности готовых труб. В последней клети калибрующей группы обжатие принимают равным нулю, предпоследней–до 0,2 от обжатия в последней клети средней группы.

В средней группе клетей практикуют равномерное и неравномерное распределение частных деформаций. При равномерном распределении обжатия во всех клетях этой группы принимают постоянными. Неравномерное распределение частных деформаций может иметь несколько вариантов и быть охарактеризовано следующими закономерностями:

обжатие в средней группе пропорционально уменьшают от первых клетей к последним – падающий режим;

в нескольких первых клетях средней группы частные деформации уменьшают, а остальных оставляют постоянными;

обжатие в средней группе сначала увеличивают, а затем уменьшают;

в нескольких первых клетях средней группы частные деформации оставляют постоянными, а в остальных уменьшают.

При падающих режимах деформаций в средней группе клетей уменьшаются различия в величине мощности прокатки и нагрузки на привод, вызываемые ростом сопротивления деформации металла по мере прокатки, вследствие снижения его температуры и повышения скорости деформации. Считается , что уменьшение обжатий к концу стана также позволяет улучшить качество наружной поверхности труб и снизить поперечную разностенность.

При расчете калибровки валков принимаем равномерное распределение обжатий.

Величины частных деформаций по клетям стана приведены на рис. 3.1.

Распределение обжатий

Исходя из принятых величин частных деформаций средние диаметры калибров можно рассчитать по формулепроизводстве труб , так и, непосредственно, ... сбои) в ходе производства пенобетона. При производстве пенобетона применяются различные... работников, непосредственно связанных с производством пенобетона, специальными одеждой, ...

  • Производство безнапорных железобетонных труб

    Дипломная работа >> Промышленность, производство

    Проката Производство труб методом центробежного проката. Железобетонные трубы изготовляют... при центробежном способе производства труб . Загрузку центрифуг бетонной... позволяет производить распалубку форм. Производство труб методом радиального прессования. Этот...

  • mob_info