Где накапливается стронций в человеке? Особенности аккумуляции радионуклидов растительностью Анализ результаты исследований

  • 7. Поведение радионуклидов в окружающей среде
  • 7.1. Миграция радионуклидов в биосфере и в сфере
  • Сельскохозяйственного производства
  • 7.2. Поведение радионуклидов в почве
  • 7.3. Поступление радионуклидов в растения
  • 7.4. Накопление радионуклидов растительностью лесных фитоценозов
  • 7.5. Пути поступления и особенности распределения радионуклидов в организме животных и птицы
  • 7.6. Переход радионуклидов из кормов в молоко и мясо
  • Крупного рогатого скота, Бк/кг
  • Рациона в продукцию животноводства (в % на 1 кг продукта)
  • 8. Агропромышленное производство в условиях радиоактивного загрязнения
  • 8.1. Общие принципы организации агропромышленного производства
  • 8.2. Мероприятия по уменьшению содержания радионуклидов в продукции растениеводства
  • 8.2.1. Инвентаризация сельскохозяйственных угодий
  • По плотности загрязнения радионуклидами
  • 8.2.2. Прогноз содержания радионуклидов в урожае
  • 8.2.3. Ограничения по плотности загрязнения почв при возделывании различных сельскохозяйственных культур
  • Обеспеченности почв обменным калием, Ки/км2
  • 8.2.4. Система обработки почв в условиях радиоактивного загрязнения
  • 8.2.5. Принципы подбора культур и сортов
  • 8.2.6. Применение удобрений, известкование кислых почв
  • Радионуклидами землях
  • Радионуклидами землях
  • Культур микроэлементами
  • Радионуклидами землях
  • 8.2.7. Особенности применения средств защиты в условиях радиоактивного загрязнения
  • 8.2.8. Технологические приемы обработки растениеводческой продукции, направленные на снижение содержания в ней радионуклидов
  • Загрязненного радиоактивными веществами
  • 8.2.9. Особенности использования сенокосно-пастбищных угодий
  • 8.3. Мероприятия по уменьшению содержания радионуклидов в продуктах животноводства
  • 8.4. Радиационный контроль природной среды и сельскохозяйственной продукции
  • 8.5. Радиационная безопасность при проведении сельскохозяйственных работ
  • Заключение
  • Республиканские допустимые уровни
  • Содержания радионуклидов Cs-137 и Sr-90 в
  • Пищевых продуктах и питьевой воде (рду-99)
  • Нормируемые величины для: Cs-137
  • Республиканские допустимые уровни содержания радионуклидов цезия-137 и стронция-90 в сельскохозяйственном сырье и кормах (рду-99)
  • Коэффициенты перехода Cs-137 (нКи/кг:Ки/км2 или Бк/кг:кБк/м2) в продукцию растение­водства в зависимости от обеспеченности дерново-подзолистых почв обменным калием
  • Коэффициенты перехода Сs-137 (нКи/кг:Ки/км2 или Бк/кг:кБк/м2) в продукцию растениеводства в зависимости от обеспеченности торфяно-болотных почв обменным калием
  • Коэффициенты перехода Sr-90 Ки/кг:Ки/км2 или Бк/кг:кБк/м2) в продукцию растение­водства в зависимости от степени кислотности дерново-подзолистых почв
  • Коэффициенты перехода Sr-90 (нКи/кг:Ки/км2 или Бк/кг:кБк/м2) в продукцию растениеводства в зависимости от степени кислотности торфяно-болотных почв
  • Приложение 7 Рекомендуемые системы защиты сельскохозяйственных культур для зоны радиоактивного загрязнения
  • Литература
  • 7.3. Поступление радионуклидов в растения

    Известно, что в растениях может накапливаться, не повреждая их и не снижая урожайность, такое количество радионуклидов, при котором растениеводческая продукция становится непригодной для использования. Радионуклиды в растения могут поступать через вегетативные органы - аэральный путь поступления и через корневую систему - корневой путь поступления. Аэральное поступление наиболее значимое при радиоактивном загрязнении воздушной среды сразу после радиационного инцидента. При попадании радионуклидов в почву преобладает корневой путь поступления.

    При аэральном загрязнении на наземные органы растений оседают радиоактивные аэрозоли, оплавленные силикатные и карбонатные частицы грунта, частицы топлива, высокорадиоактивные “горячие” частицы, входящие в состав “сухого” и “мокрого” выпадения. Осевшие на растения радиоактивные выпадения слабо закрепляются в наземных органах, потому что одновременно с осаждением происходят полевые потери радиоактивности. Степень удержания радиоактивных выпадений растительностью оценивается по величине первичного удержания, которое выражается отношением количества радиоактивных частиц, осевших на растения, к общему количеству радиоактивных частиц, выпавших на данную площадь.

    Первичное удержание и последующие процессы потерь радиоактивности зависят от многих факторов, в том числе от размера частиц и вида выпадений, площади удерживающей поверхности и плотности растительного покрова, морфологии растений и типа травостоя, урожайности наземной массы, метеоусловий во время и после выпадения радиоактивных осадков и др.

    Максимальные потери радиоактивности при ветреной и дождливой погоде. Мелкие частицы и водорастворимые формы закрепляются в 4-7 раз прочнее, чем крупные и твердые нерастворимые частицы. Потери радиоактивности растениями, обусловленные всеми факторами, кроме радиоактивного распада, называются полевыми потерями радиоактивности. Скорость удаления радиоактивных веществ с растительного покрова характеризует период полупотерь, т.е. время, за которое смывается дождем и сдувается ветром 50% активности. Максимальные потери радиоактивности происходят в первые 2-3 суток, а всего за 7 суток она снижается на 70-90%. Потери фиксированных радионуклидов мало зависят от погодных условий и определяются свойствами радионуклидов и биологическими особенностями растений. Период полупотерь для слабозакрепленной фракции йода-131 составляет 14 суток, цезия-137 – 14 суток, для стронция-90 – 5 сут., а для прочнозакрепленной фракции этих радионуклидов – соответственно 27, 90 и 70 суток

    На поверхности листьев радионуклиды могут находиться в свободном или сорбированном состоянии. Сорбция зависит от температуры и влажности воздуха и листьев, морфологии листьев, солевого состава и кислотности осадков, вида радионуклида и его формы.

    Основными механизмами аэрального поступления радионуклидов являются ионно-обменные реакции и диффузия. Водорастворимые формы поступают с водой через цитоплазму в клетки основной ткани, через стенки клеток и межклеточники, через клетки, расположенные над поверхностью жилок, через устьица. Чем толще кутикула, тем слабее происходит диффузия и ионно-обменные реакции. Поступление через устьица усиливается на свету, когда они открываются при дыхании. На растительности естественных луговых ценозов радионуклиды задерживаются в нижней части растений и в верхнем слое дернины. Здесь происходит дополнительное поступление радионуклидов через основание стебля и через поверхностные корни, поэтому растительность естественных лугов загрязняется радионуклидами сильнее, чем растительность окультуренных кормовых угодий.

    После проникновения в листья часть радионуклидов остается в листьях, а часть разносится по растению и концентрируется в других органах. Продвижение радионуклидов по растению зависит от физико-химических свойств радионуклидов и в меньшей степени от биологических особенностей растений. Наиболее активно продвигается по растению радиоцезий, являющийся аналогом калия, а стронций, рутений и церий концентрируются в листьях в небольших количествах. Переход этих радионуклидов из листьев в генеративные органы в десятки раз меньше, чем цезия.

    Радионуклиды, осевшие на почву в составе различных выпадений, могут подниматься ветром или дождем и оседать на растительность. Это явление называется вторичным радиоактивным загрязнением растений, интенсивность которого оценивается по величине коэффициента ветрового подъема, определяемого как отношение концентрации радионуклида в воздухе на высоте 1 м к плотности поверхностного загрязнения почвы. Его величина зависит, в основном, от свойств атмосферы (плотности, турбулентности, температуры, давления, влажности, скорости движения воздуха над поверхностью почвы), от свойств почвы (гранулометрического и минералогического состава, влажности, плотности, структуры), от хозяйственной деятельности человека (обработка почвы, выпас скота, автомобильное движение), а также от рельефа и вида растительности. Вторичное загрязнение растительности происходит при пыльных бурях, при горении торфяников, лесов и сжигании послеуборочных остатков.

    Кроме ветрового переноса причиной вторичного загрязнения может быть забрызгивание грязью нижних частей растений во время выпадения сильных дождей. Максимальная высота подъема частиц от земли около 40 см, поэтому такое загрязнение наиболее значимо для низкорослых видов растений. Вклад вторичного загрязнения в общее загрязнение может составлять 30% и более. Значительное вторичное загрязнение товарной части овощных и листовых культур радионуклидами происходит в период образования и роста плодов и листьев, злаковых культур – в фазах колошения, цветения и молочной спелости. Практически не загрязняется зерно бобовых и крестоцветных культур, кукурузы, так как оно защищено створками бобов, стручков и листьями, а также клубни и корнеплоды, защищенные почвой.

    Механизм усвоения радионуклидов корнями растений подобен усвоению необходимых элементов питания. Основными механизмами усвоения радионуклидов являются ионно-обменные реакции и диффузия. Главное отличие состоит в том, что радионуклиды находятся в почве в предельно низких концентрациях, а элементы питания – в более высоких концентрациях. Основное количество радионуклидов извлекается корнями из почвенного раствора, а также из почвенно-поглощающего комплекса, с частицами которого тесно контактируют корневые волоски, или зона поглощения корня. Поглощение ионов корнями и продвижение их вверх по растению происходит в три стадии. В первой стадии происходит адсорбция ионов мембранами поглощающих клеток корней. Адсорбция носит обменный и необменный характер. Обменными ионами растений являются Н + и СО 3 2- , которые образуются при диссоциации углекислоты, выделяемой при дыхании. Ион Н + из цитоплазмы проходит с корневыми выделениями через мембрану и вступает в обмен преимущественно с одновалентными ионами почвенного раствора и частиц, где могут находиться радионуклиды. В результате этого обмена ионы радионуклидов поступают в цитоплазму клеток корневых волосков. Механизм поступления цезия-137 и стронция-90 в корневую систему растений изучен недостаточно полно. На первом этапе усвоения радионуклидов важную роль играет катионно-обменная емкость корней, т.е. содержание обменных катионов, которая зависит от содержания в мембране клеток корня пектина и веществ белковой природы. Виды растений с высокой катионно–обменной емкостью корней поглощают из почвенного раствора больше катионов кальция, чем катионов других одновалентных элементов. Катионно–обменная емкость корней у злаковых культур составляет 10–23 мг-экв./100 г сухих корней, у бобовых - 40–60 мг-экв./100 г сухих корней. Этим можно объяснить повышенную способность бобовых культур к накоплению кальция и его химического аналога стронция. Существует прямая связь между скоростью поступления цезия-137 и величиной катионно-обменной емкости корней. Например, при добавлении в опытный раствор ионов калия и кальция катионно-обменная емкость стенок клеток может повышаться в результате ее насыщения этими катионами, поэтому адсорбция ионов цезия и стронция на клеточные стенки практически не происходит. При высокой концентрации калия в растворе ионы калия поступают преимущественно по калиевым каналам, поэтому поступление цезия значительно снижается, т.е. происходит дискриминация цезия относительно калия. У всех культур дефицит обменного калия в почве приводит к увеличению коэффициента накопления цезия у ячменя до 20 раз, у ржи до 30 раз и у пшеницы до 40 раз. При поступлении стронция практически отсутствует дискриминация кальцием. Известно, что дефицит ионов калия в растворе повышает также поступление стронция в корни. В корни растений цезия поступает больше, чем стронция. Установлено, что ионы стабильных и радиоактивных элементов могут вступать в реакцию взаимодействия с компонентами мембран с образованием различных соединений. В связанном состоянии в составе этих соединений, которые называются веществами–переносчиками, ионы поступают в цитоплазму, где комплекс распадается с образованием иона и вещества-переносчика. Ион мигрирует дальше по растению и включается в обмен веществ. Вещество-переносчик вновь возвращается к мембране и присоединяет новый ион. Во второй стадии происходит проникновение ионов в проводящие ткани, т.е. трахеиды и сосуды ксилемы. В третьей стадии происходит восходящее движение ионов по сосудам ксилемы с ксилемным соком в клетки и ткани наземных органов. В состав ксилемного сока входит вода, органические и неорганические вещества, элементы питания и другие соединения. Ксилемный сок перемещается по растению за счет корневого давления и транспирации. При транспирации вода испаряется, а все вещества, в том числе и радионуклиды, остаются в клетках и тканях наземных органов. Скорость продвижения радионуклидов по растению зависит от интенсивности транспирации. В жаркую и сухую погоду транспирации усиливается, поэтому может повышаться содержание радионуклидов в наземной части растений. Ионный обмен между клеточной оболочкой корневого волоска и почвенными частицами происходит труднее, чем обмен ионами из почвенного раствора. При низкой концентрации радионуклидов в почве они поступают в растения в результате ионно-обменных реакций. При высокой концентрации радионуклидов в почве основным механизмом поступления является диффузия, поэтому поступление радионуклидов может значительно возрастать.

    Из корней цезий, как одновалентный элемент, выводится быстрее, чем стронций, который может связываться в корнях в трудноподвижные формы. Таким образом, радионуклиды распределяются в органах растений неравномерно. Основное количество радионуклидов концентрируется в корнях. Распределение в наземных органах растений неравномерное. Например, в созревших растениях фасоли Sr-90 распределяется следующим образом: в листьях 53-68%, стеблях 15-28%, створках бобов 12-25% и зерне 7-14%.

    Для оценки поступления радионуклидов из почвы в растения используют различные показатели. Наиболее часто используются коэффициенты перехода (Кп), а также коэффициенты накопления или коэффициенты концентрации (Кн). Коэффициент перехода – это отношение содержания радионуклида в растительной массе к поверхностной активности почвы, коэффициент накопления – отношение содержания радионуклида в растительной массе к содержанию радионуклида в почве. Коэффициент накопления различными культурамиSr-90 изменяется от 0,02 до 12, Сs-137 - от 0,02 до 1,1.

    Иногда используют коэффициент биологического поглощения, который показывает отношение концентрации радионуклида в золе растений к концентрации радионуклида в почве. Скорость миграции радионуклидов в цепи почва–растение зависит от содержания их изотопных и неизотопных носителей. Концентрация неизотопных носителей в почве значительно выше, чем изотопных. Для оценки переноса радиоактивного элемента относительно его стабильного носителя в радиоэкологических цепях используют коэффициент дискриминации, который показывает изменение соотношения радионуклида и его химического аналога при миграции по биологическим цепям, который определяется по формуле:

    где С – концентрация цезия-137 или калия в почве и растении.

    Дискриминация цезия по отношению к калию наиболее значима в цепи почва–растение, дискриминация стронция по отношению к кальцию наиболее значима в цепи корм – животное.

    Величина накопления радионуклидов зависит от следующих основных показателей: 1) свойств радионуклидов и форм нахождения их в почве; 2) физико-химических параметров почвы; 3) биологических особенностей растений; 4) агротехники возделывания; 5) погодно-климатических условий.

    Поступление и распределение радионуклидов по растению определяется их свойствами и участием в процессах обмена веществ. Из водного раствора ионы одновалентных радионуклидов поглощаются интенсивнее, чем ионы двух- и трехвалентных радионуклидов. Известно, что 60 Со, 106 Ru и 144 Се поглощаются в 10 раз меньше, чем цезий и стронций. Из почвенных частиц одновалентные ионы поглощаются незначительно, потому что они прочнее фиксируются. При поступлении из водного раствора коэффициент накопления Сs-137 значительно выше, чем Sr-90. При поступлении из почвенно-поглощающего комплекса коэффициент накопления цезия-137 намного меньше, чем стронция-90. Это связано с более прочной сорбцией цезия-137 минеральной частью почвенно-поглощающего комплекса. В наземную часть растений ионы низких валентностей переносятся активнее и в больших количествах, чем ионы высоких валентностей, которые до 90-99% концентрируются в корнях. Из поступивших в корни цезия-137 и стронция-90 в корнях остается 20-40%, а 60-80% переносится в наземные органы, где они распределяются неравномерно. Обнаружено сходство в поглощении и продвижении по растению цезия-137 и калия, стронция-90 и кальция, а также радиоцезия и стабильного цезия, радиостронция и стабильного стронция. Различие обусловлено неодинаковыми формами нахождения радионуклидов в почвах. Большинство радионуклидов наведенной активности являются биологически важными микроэлементами, которые накапливаются преимущественно в корнях, кроме 65 Zn и 54 Mn, которые накапливаются в наземной части и репродуктивных органах, где Кн по культурам изменяются до 10 раз. Трансурановые радионуклиды имеют очень низкие коэффициенты накопления (n · 10 -2 – 10 -10), т.к. у них ограничено поступление в корни и перенос из них в вегетативные органы. Накопление снижается в ряду: нептуний > америций > кюрий > плутоний.

    Поступление радионуклидов зависит от времени и форм нахождения в почве, от концентрации доступных форм в корнеобитаемом слое. После аварии на ЧАЭС наиболее интенсивно поступление цезия происходило в первые 2 года. К концу 5-го года содержание обменного цезия в почве уменьшилось в 3 и более раз и вышло на стационарный уровень. Таким образом, со временем уменьшается содержание доступных для растений форм цезия-137 и снижается его поступление в растения. Подвижность и доступность стронция-90 практически не изменяется со временем, поэтому он находится в водорастворимой и обменной формах, которые хорошо доступны для корневого усвоения.

    Среди почвенных характеристик наибольшее влияние оказывают гранулометрический и минералогический состав, агрохимические показатели почвы и режим увлажнения почвы. Гранулометрический состав влияет на сорбцию радионуклидов, которая зависит от степени дисперсности частиц. Чем больше в почве глинистых частиц, тем прочнее сорбция радионуклидов и тем меньше коэффициенты накопления радионуклидов растениями. На почвах тяжелого гранулометрического состава с высоким содержанием глин радионуклиды накапливаются в растениях в меньших количествах, чем на почвах легкого состава. Основное влияние на накопление радионуклидов оказывает илистая фракция, в состав которой входят глинистые минералы группы монтмориллонита, гидрослюд и слюд. В зависимости от типа почвы при одинаковой плотности загрязнения их Сs-137 и Sr-90 коэффициенты пропорциональности для этих радионуклидов могут различаться до 2-х и более раз. Например, Кп цезия-137 для картофеля на дерново-подзолистой песчаной почве составляет 0,08, а на дерново-подзолистой суглинистой – 0,03. Для стронция-90 коэффициенты пропорциональности на этих почвах составляют соответственно 0,33 и 0,17. Коэффициенты накопления радионуклидов на разных типах почв при одинаковой плотности поверхностной загрязненности могут различаться в 10–20 раз, а иногда до 100 раз. Цезий-137 менее доступен для растений, что связано с его необменной сорбцией в кристаллических решетках глинистых минералов. Коэффициенты накопления цезия-137 и стронция-90 на черноземных почвах соответственно в 20 и 10 раз ниже, чем на дерново-подзолистых почвах. Это связано с тем, что у черноземов богатый почвенно-поглощающий комплекс, насыщенный физической глиной, илом, гумусом и обменными катионами, что обеспечивает высокую емкость поглощения этой почвы и, следовательно, меньшее поступление радионуклидов в растения. На более тяжелых почвах Sr-90 накапливается в растениях в 5–10 раз интенсивнее, чем Сs-137. На Полесье преобладают супесчаные легкие дерново-подзолистые и торфяно-болотные почвы. Коэффициенты перехода цезия-137 в растения здесь в 4–5 раз выше, чем в других районах Беларуси. Накопление Сs-137 и Sr-90 в растениях одних и тех же культур здесь практически не отличаются, т.е. Кп цезия-137 примерно равны Кп стронция-90, потому что при дефиците глинистых минералов Cs-137 находится в этих почвах в водорастворимой и обменной форме Накопление радионуклидов на торфяно-болотных почвах зависит от окультуренности почвы, минерализации и состава золы почвы, толщины торфяного слоя, ботанического состава торфообразующих растений, кислотности почвенного раствора и наличия обменных катионов, влажности почвы, глубины залегания и минерализации грунтовых вод. Изучены закономерности накопления радионуклидов на торфяно-болотных почвах Брагинского и Хойникского массивов. Более высокая зольность почв, повышенное содержание карбонатов, минералов илистой фракции, а также более низкая влажность почвы Брагинского массива способствуют меньшему накоплению радионуклидов в растениях, чем на почвах Хойникского массива. С увеличением мощности торфяного слоя возрастает поступление цезия и стронция в растительность, т.к. снижается зольность почвы.

    Особенности накопления радионуклидов растениями на разных типах почвы следует учитывать при производстве сельскохозяйственной продукции.

    Доказано, что все агрохимические показатели почвы, способствующие повышению сорбции радионуклидов почвой, снижают их поступление в растения. Большинство агрохимических показателей почвы тесно связаны между собой, поэтому степень действия каждого отдельного свойства зависит от влияния всего комплекса. Наиболее существенное влияние на поступление Сs-137 в растения на дерново-подзолистых почвах оказывает содержание обменных катионов К + , Мg 2+ , Са 2+ и гумуса, которые определяют емкость катионного обмена и кислотность почвы. Установлена отрицательная зависимость между коэффициентом перехода в растения Сs-137 и содержанием в почве обменного калия (К 2 О). Обменный калий оказывает конкурентное влияние на поступление цезия-137, т.е. чем больше обменного калия в почве, тем меньше поступление цезия-137. Известно, что чем больше в ППК обменного калия, тем быстрее происходит закрепление цезия-137 в ППК и уменьшение его коэффициента перехода в растения. Коэффициент перехода цезия в растения при низком содержании обменного калия (К 2 О = 40-80 мг/кг почвы), может уменьшаться всего на 20-60%, а при высоком содержании К 2 О может снижаться до 70%. Насыщение дерново-подзолистой почвы обменным калием выше оптимального уровня (300 мг/кг почвы) не сопровождается снижением поступления цезия-137 в растения. Для торфяно-болотных почв оптимальный уровень содержания в почве обменного калия не должен превышать 1000 мг/кг почвы. Чем больше в почве обменного калия, тем меньше коэффициента накопления стронция-90. Однако эта зависимость менее выражена, чем для коэффициента накопления цезия-137.

    Установлена отрицательная зависимость между содержанием обменного кальция, уровнем кислотности почвенного раствора и поступлением в растения стронция-90. Чем больше в почве обменного кальция и чем меньше кислотность почвенного раствора, тем меньше коэффициенты перехода стронция-90 в растения. Эта закономерность проявляется и при поступлении цезия-137 в растения, но связь менее сильная. По мере повышения содержания обменного кальция с 550 до 2000 мг СаО на кг почвы Кп Сs-137 и Sr-90 снижается в 1,5–2 раза. Изменение кислотности почвенного раствора от кислого интервала (рН = 4,5–5,0) к нейтральному (рН = 6,5–7,0) снижает переход стронция-90 в растения в 2-3 раза. Дальнейшее насыщение почвы свободными карбонатами кальция сдвигает рН в щелочной диапазон, однако это не сопровождается уменьшением коэффициента перехода. На карбонатных почвах коэффициент накопления стронция-90 снижается до 3-х раз, потому что происходит необменная фиксация Sr-90 с образованием карбонатных солей. На этих почвах Кп Сs-137 увеличивается до 4-х раз, т.к. здесь Сs-137 связывается водорастворимыми органическими соединениями, которые легко его освобождают в виде доступных ионов. Установлено, что чем больше насыщенность почвы обменными основаниями, тем меньше коэффициент перехода Сs-137 и Sr-90 в растения.

    Торфяно-болотные почвы бедны по содержанию калия, кальция и магния. Как правило, это кислые почвы, поэтому Кп Сs-137 и Sr-90 на этих почвах в 5–20 раз больше, чем на дерново-подзолистых.

    На переход цезия и стронция в растения оказывает влияние органическое вещество почвы. Гумусовые кислоты, особенно гуминовая кислота, образуют сложные комплексы с радионуклидами или гуматы, поэтому из органических комплексов доступность стронция снижается в 2–4 раза, а цезия – в 1,5 раза. Повышенная биологическая доступность радионуклидов на торфяно-болотных почвах связана со способностью органического вещества фиксировать ионы радионуклидов на поверхности органических коллоидов, поэтому не обеспечивается прочная сорбция радионуклидов и увеличивается их доступность растениями. Кроме этого на торфяно-болотных почвах повышена кислотность почвенного раствора, что обеспечивает хорошую растворимость солей радионуклидов и их доступность растениям.

    Таким образом, показатели почвенного плодородия могут оказывать существенное влияние на накопление радионуклидов всеми сельскохозяйственными культу­рами. Установлено, что минимальный переход Cs-137 иSr-90 в растения наблюдается на почвах с оптимальными параметрами их агрохимических характеристик.

    Большое влияние на накопление радионуклидов растениями оказывает режим увлажнения почв. Сведения по влиянию влажности почвы на поступление радионуклидов в растения неоднозначны. Известно, что количество катионов цезия и стронция, вытесняемых из почвы в раствор, возрастает с увеличением влажности. Это связано со сложным характером взаимовлияния влажности, свойств почвы и биологических особенностей растений на процессы миграции радионуклидов в цепи почва–растения. С увеличением влажности почвы возрастает доля водорастворимого и обменного Sr-90 и доля обменного Сs-137, поэтому возрастают коэффициенты перехода и содержание этих радионуклидов в растительности. Установлено, что переход радиоцезия в многолетние травы повышается в 10-27 раз на гидроморфных дерново-глеевых и дерново-подзолисто-глеевых почвах по сравнению с автоморфными и временно-избы­точ­но увлажняемыми разновидностями этих почв.

    На накопление радионуклидов растениями оказывают влияние различные биологические особенности растений, среди которых выделяют эволюционное происхождение растений или филогенез. Растения, имеющие раннее происхождение, накапливают больше радионуклидов, чем растения, возникшие в поздние периоды. По накоплению радионуклидов отделы флоры располагаются в следующем убывающем порядке: лишайники > мхи > папоротники > голосеменные > покрытосеменные. Различия по накоплению радионуклидов выявлены в пределах классов, семейств и видов. Межвидовые различия могут достигать до 5–100 и более раз. Содержание цезия-137 в расчете на сухое вещество отдельных культур может различаться до 50 раз, а накопление стронция-90 - до 30 раз при одинаковой плотности загрязнения почвы. Сортовые различия в накоплении радионуклидов значительно меньше (до 1,5–3 раз), но их также необходимо учитывать при подборе культур для возделывания в условиях радиоактивного загрязнения. По накоплению радионуклидов в товарной части культуры располагаются в следующем убывающем порядке: корнеплоды, бобовые, картофель, крупяные, зерновые и овощные культуры. По накоплению стронция-90 выделяют сильнонакапливающие культуры (бобовые), средненакапливающие культуры (крупяные) и слабонакапливающие культуры (зерновые). Бобовые культуры накапливают радионуклиды в 2-10 раз больше, чем зерновые. Известно, что сорта интенсивного типа для формирования урожая требуют много калия. При дефиците калия в почве его недостаток может восполняться за счет цезия. Установлено, что озимые зерновые культуры и раннеспелые яровые культуры накапливают меньше радионуклидов, потому что они формируют высокую урожайность растительной массы, на которую распределяются поступившие в растение радионуклиды, т.е. происходит биологическое разбавление радионуклидов.

    Высокие коэффициенты накопления радионуклидов у многолетних трав естественных фитоценозов, видовой состав которых зависит от типа и влажности почвы, при этом видовые различия в пределах одной экосистемы достигают 15-30 раз. Осоковые и осоко-злаковые ценозы, произрастающие на постоянно переувлажненных почвах, накапливают цезий-137 в 100 и более раз больше, чем злаковые ценозы. Высокие коэффициенты накопления характерны для разнотравья всех фитоценозов.

    Накопление радионуклидов зависит от типа минерального питания, т.е. от потребности культур в калии, кальции и других элементах питания. Калиелюбивые культуры (свекла, картофель, овес, капуста) накапливают больше цезия, а кальциелюбивые культуры (люпин, люцерна, клевер, горох) накапливают больше стронция.

    Значительное влияние на накопление радионуклидов оказывает онтогенез или фаза развития растений. Максимальное накопление наблюдается в ранних фазах развития, когда происходит интенсивный рост, сопровождающийся активным всасыванием питательных веществ, радионуклидов и переносом их в наземные органы. Например, у зерновых культур максимальное накопление в наземной массе происходит в фазе кущения и в фазе выход в трубку. В фазах молочной и восковой спелости происходит отток питательных веществ и радионуклидов из листьев в зерно, где содержание цезия может возрастать до 4-х раз.

    В органах растений радионуклиды распределяются неравномерно. Известно, что 90–99% рутения, церия и кобальта концентрируется в корнях. Концентрация цезия и стронция в корнях может составлять 20–40%, а 60–80% этих радионуклидов поступает в наземные органы, где они распределяются неравномерно. Около 80% радионуклидов оседает в листьях и стеблях. Наименьшая концентрация радионуклидов отмечается в генеративных органах, т.е. в семенах, при максимальном накоплении в оболочках, кроющих чешуях, створках бобов и стручков. В корнеплодах высокое накопление радионуклидов в головке, в кожице и в сердцевине. В клубнях картофеля максимальное накопление в кожуре. Следует отметить, что при одинаковой плотности загрязнения почвы в картофеле содержание цезия-137 и стронция-90 значительно ниже, чем в корнеплодах. Это связано с тем, что клубень – это видоизмененный побег, в который питательные вещества и радионуклиды поступают из наземных органов. Корнеплод – это видоизмененный корень, активно поглощающий и накапливающий радионуклиды.

    Накопление радионуклидов зависит от места расположения, типа и мощности корневой системы. Растения с мочковатой и корневищной корневой системой, расположенной в верхних слоях почвы, накапливают больше радионуклидов, чем растения со стержневой системой, которая проникает в более глубокие и «чистые» почвенные горизонты.

    Из климатических условий наибольшее влияние на поступление радионуклидов оказывают годовое количество осадков, их распределение по месяцам и сумма положительных температур. Максимальное поступление радионуклидов наблюдается при оптимальной температуре и оптимальной влажности, которые обеспечивают интенсивный рост и развитие растений.

    Кроме свойств радионуклидов, почвенных характеристик и биологических особенностей растений на накопление радионуклидов значительное влияние оказывает технология возделывания культур, т.е. система обработки почвы, внесение извести, минеральных и органических удобрений.


    Введение

    Загрязнение территории Республики Беларусь радионуклидами после аварии на ЧАЭС

    1 Влияние ёмкости катионного обмена и содержание обменных катионов в почве на поступление радионуклидов в растительность

    2 Влияние кислотности почв на поступление радионуклидов в растительность

    3 Влияние содержания в почве органического вещества на поступление радионуклидов в растительность

    4 Влияние режима увлажнения на поступление радионуклидов из почвы в растительность

    Изучение накопления радионуклидов в травостое лугов различного режима увлажнения

    1 Цель, задачи, материал и методика исследований

    2 Анализ результатов исследований

    Литература


    Введение


    Наша страна богата лесами, озерами, реками, поражает многообразием животного и растительного мира, несмотря на то, что территория Республики Беларусь не большая.

    Известно, что основными силами природы являются тяготение, электромагнетизм, сильное и слабое взаимодействия. Сильное взаимодействие ничто иное как радиоактивность.

    Радиация является одной из потенциально опасных сил. Человек научился использовать радиоактивные вещества для своего блага: диагностика, получение электрической энергии и др.

    Техногенные выбросы радионуклидов в природную среду в ряде районов земного шара значительно превышают природные нормы.

    До недавнего времени в качестве важнейших загрязняющих веществ рассматривались, главным образом, пыль, угарный и углекислый газы, оксиды серы и азота, углеводороды. Радионуклиды рассматривались в меньшей степени. В настоящее время интерес к загрязнению радиоактивными веществами вырос, в связи с факторами появления острых токсичных эффектов, вызванных загрязнением стронцием и цезием.

    В результате катастрофы на Чернобыльской АЭС радиоактивному загрязнению подверглось более 1,8 млн. га сельскохозяйственных угодий, т.е. около 20% их общей площади. В настоящее время радиационная обстановка определяется, в основном, двумя техногенными радионуклидами - цезием-137 и стронцием-90, которые являются химическими аналогами калия и кальция соответственно, и поэтому они легко включаются в процессы миграции в биосфере.

    Это привело к ухудшению здоровья людей, животного мира, загрязнению почвы, озер, рек. Резко сократились посевные площади, снизился сбор сельскохозяйственных культур, и уменьшилось количество скота. Ликвидировано 54 колхоза и совхоза, закрыто 9 заводов агропромышленного комплекса, прекратили хозяйственную деятельность еще около 300 народно-хозяйственных комплекса, свыше 600 школ и детских садов, около 100 больниц, свыше 500 объектов торговли, общественного питания и бытового обслуживания. Однако, несмотря на уже сделанные многочисленные оценки и прогнозы, последние нельзя считать окончательными.

    В значительной мере от последствий на ЧАЭС пострадали флора и фауна. Последствия радиоактивного загрязнения для окружающей среды после аварии можно разделить на две группы:

    лучевое поражение сообществ растений и животных

    накопление радионуклидов, в концентрации, представляющих опасность не только для растений и животных, но и для человека, который так или иначе их потребляет и использует для питания.

    Размеры лучевого радиационного повреждения могут быть различными в зависимости от плотности загрязнения. При очень высоких плотностях загрязнения наблюдается полная гибель отдельных экосистем.

    Цель курсовой работы: Оценить влияние агрохимических характеристик почвы на накопление 137Cs и 90Sr в растительности.

    Задачей является установление корреляционной связи загрязнения почвы по 137Cs и 90Sr и агрохимических характеристик: ёмкости катионного обмена и содержание обменных катионов; кислотности почв; содержания в почве органического вещества и режима увлажнения.


    1. Загрязнение территории Республики Беларусь радионуклидами после аварии на ЧАЭС


    апреля 1986 года на четвертом энергоблоке Чернобыльской АЭС произошел взрыв ядерного реактора. Этот день поделил жизнь населения до и после Чернобыля. Чернобыльская катастрофа самая крупнейшая в свете катастрофа, на нашей планете. В реакторе находилось 190,2 тонны ядерного горючего, в окружающую среду было выброшено около 4 тонн (1018 Бк радионуклидов йода, цезия, стронция, плутония и других, без учета газов). Особую, опасность в первые дни представлял Иод-131.

    В результате аварии на четвертом блоке Чернобыльской АЭС во внешнюю среду поступили радиоактивные вещества общей активностью около 10 ЭБк. Радиоактивные выбросы привели к значительному загрязнению местности, населенных пунктов, водоемов. Загрязнение территории Беларуси с плотностью свыше 37 кБк/м2 цезием-137 составило 23% ее площади. Эта величина для Украины составляет 5%, России - только 0,6%.

    Результаты почвенного обследования земель республики показали, что наиболее загрязненными в результате катастрофы на ЧАЭС оказались Гомельская, Могилевская и Брестская области.

    В соответствии со статьей 4 Закона О правовом режиме территорий, подвергшихся радиоактивному загрязнению после катастрофы на Чернобыльской АЭС территория Республики Беларусь разделена на зоны в зависимости от радиоактивного загрязнения почв радионуклидами и величины среднегодовой эффективной дозы (табл. 1.1).

    Зона эвакуации (отчуждения) - территория вокруг Чернобыльской АЭС, с которой в 1986 году в соответствии с существовавшими нормами радиационной безопасности было эвакуировано население (30-километровая зона и территория, с которой проведено дополнительное отселение в связи с плотностью загрязнения почв стронцием-90 выше 3 Ки/кв. км и плутонием-238, 239, 240 - выше 0,1 Ки/кв. км);

    Зона первоочередного отселения - территория с плотностью загрязнения почв цезием-137 от 40 Ки/кв. км либо стронцием-90 или плутонием-238, 239, 240 соответственно 3,0; 0,1 Ки/кв. км и более;

    Зона последующего отселения - территория с плотностью загрязнения почв цезием-137 от 15 до 40 Ки/кв. км либо стронцием-90 от 2 до 3 Ки/кв. км или плутонием-238, 239, 240 от 0,05 до 0,1 Ки/кв. км, на которых среднегодовая эффективная доза облучения населения может превысить (над естественным и техногенным фоном) 5 мЗв в год, и другие территории с меньшей плотностью загрязнения вышеуказанными радионуклидами, где среднегодовая эффективная доза облучения населения может превысить 5 мЗв в год;

    Зона с правом на отселение - территория с плотностью загрязнения почв цезием-137 от 5 до 15 Ки/кв. км либо стронцием-90 от 0,5 до 2 Ки/кв. км или плутонием-238, 239, 240 от 0,02 до 0,05 Ки/кв. км, на которых среднегодовая эффективная доза облучения населения может превысить (над естественным и техногенным фоном) 1 мЗв в год, и другие территории с меньшей плотностью загрязнения вышеуказанными радионуклидами, где среднегодовая эффективная доза облучения населения может превысить 1 мЗв в год;

    Зона проживания с периодическим радиационным контролем - территория с плотностью загрязнения почв цезием-137 от 1 до 5 Ки/кв. км либо стронцием-90 от 0,15 до 0,5 Ки/кв. км или плутонием-238, 239, 240 от 0,01 до 0,02 Ки/кв. км, где среднегодовая эффективная доза облучения населения не должна превышать 1 мЗв в год.

    По результатам радиологического обследования площади сельскохозяйственных угодий, загрязненных цезием-137 с плотностью > 1 Ки/км2, составляет более 1,8 млн га, 90Sr с плотностью загрязнения > 0,3 Ки/км2 - около 0,5 млн га, из которых 1437,9 тыс. га используются для сельскохозяйственного производства.


    Таблица 1.1 - Зонирование территории Республики Беларусь по уровню радиоактивного загрязнения и величины дозовых нагрузок на население

    Наименование зоныЭквивалент доза, мЗв/годПлотность загрязнения, кБк/м2137Сs90SrPu-238, -240Зона проживания с периодич. радиац. контролем< 137-1855,55-18,50,37-0,74---- с правом на отселение< 5 > 1185-55518,5-740,74-1,85----последующего отселения> 5555-184074-1111,85-3,7----первоочеред. отселения> 1840> 111> 3,7----отчуждения (эвакуации)территория вокруг ЧАЭС, с которой в 1986 году было эвакуировано население

    Выпавший в результате аварии радиоцезий на 50 - 98% оказался в почве в «фиксированном состоянии». Доля водорастворимых его форм не превысила 2-3%. Стронций-90, напротив, отличался более высоким содержанием подвижных форм. Только на водорастворимые формы пришлось порядка 19% его общего содержания.

    В начальный период после аварии основная масса радионуклидов сконцентрировалась в верхнем 5-сантиметровом слое почвы. Здесь содержалось 70-90% цезия-137 и 50 - 70% стронция-90. В почвах с признаками избыточного увлажнения глубина проникновения нуклидов составила 8 - 17 см.

    К 2000 г. в дерново-подзолистых супесчаных почвах цезий-137 достиг глубины 22 см, а стронций-90 - 28 см. Однако содержание их здесь в ненарушенных почвах весьма незначительно. На обрабатываемых землях радионуклиды распределены в пахотном горизонте довольно равномерно. Вторичное горизонтальное перераспределение радионуклидов связано с эрозией почв. В зависимости от ее интенсивности содержание радионуклидов в пахотном слое на пониженных элементах рельефа может повышаться до 75%.


    1.1 Влияние ёмкости катионного обмена и содержание обменных катионов в почве на поступление радионуклидов в растительность


    Известно, что в растениях может накапливаться, не повреждая их и не снижая урожайность, такое количество радионуклидов, при котором растениеводческая продукция становится непригодной для использования. Радионуклиды в растения могут поступать через вегетативные органы - аэральный путь поступления и через корневую систему - корневой путь поступления .

    Поведение радионуклидов в почвах в процессах обменного поглощения подчиняется тем общим законам, которые были установлены классическим учением К. Гедройца о поглотительной способности почв. Однако процесс сорбции, в котором участвуют радионуклиды, характеризуется тем, что сорбируемое вещество находится в микроколичествах, т. е. в предельно низких концентрациях. Поэтому в данном случае существует очень широкое отношение между величиной емкости поглощения почвы и степенью ее заполнения радиоактивными нуклидами. Следовательно, в процессе поглощения микроколичества радионуклидов не конкурируют за места на поверхности сорбента, так как по отношению к ним насыщенность сорбента всегда остается очень низкой.

    К свойствам радионуклидов, определяющим их распределение между твердой и жидкой фазами почвы, относятся заряд иона и его знак, радиус гидратированного иона, энергия гидратации иона, форма соединений, а также способность к комплексообразованию и гидролизу. Каждая почва в естественном состоянии содержит определенное количество обменно-поглощенных катионов Са, Н, Mg, Na, К, NH4 и др. В большинстве почв среди них преобладает Са, и Квторое место занимает Mg, в некоторых почвах в поглощенном состоянии содержится немного Naи NH4 .

    Для 137Csхарактерны процессы селективной сорбции, а также необменной сорбции твердой фазой почв. Способность почв фиксировать цезий в значительной степени определяется содержанием в почве лабильных глинистых минералов. Наибольшей способностью к фиксации калия, аммония и цезия обладают гидрослюды типа иллита.

    Для Cs+в зависимости от условий, определяющим обменным катионом может стать как калий, так и аммоний. Причем аммоний преобладает в восстановительных условиях донных отложениях и в торфяно-болотных почв. А на поведение 90Sr оказывает влияние органическое вещество почвы. Радионуклид присутствует в почвах в основном не в виде индивидуальных соединений с органическими веществами неспецифической природы и собственно гумусовыми кислотами, а сложных комплексов, в состав которых входят также Ca, FeиAl.

    Существует обратная зависимость накопления 90Sr в растениях от емкости поглощения почв и содержания обменного кальция. С увеличением содержания обменного кальция и величины емкости поглощения доступность 90Sr растениям

    снижается. Поступление 137Сs из почвы в растения определяется суммой поглощенных оснований и количеством обменного калия в почве. На почвах с низкой суммой поглощенных оснований и относительно небольшим количеством

    обменного калия происходит более интенсивное поглощение 137Сs растениями, чем на почвах, имеющих более высокие эти показатели .

    Известно, что чем больше в ППК обменного калия, тем быстрее происходит закрепление 137Сsв ППК и уменьшение его коэффициента перехода в растения. Коэффициент перехода цезия в растения при низком содержании обменного калия (К2О = 40-80 мг/кг почвы), может уменьшаться всего на 20-60%, а при высоком содержании К2О может снижаться до 70%. Насыщение дерново-подзолистой почвы обменным калием выше оптимального уровня (300 мг/кг почвы) не сопровождается снижением поступления 137Сsв растения. Для торфяно-болотных почв оптимальный уровень содержания в почве обменного калия не должен превышать 1000 мг/кг почвы. Чем больше в почве обменного калия, тем меньше коэффициента накопления 90Sr. Однако эта зависимость менее выражена, чем для коэффициента накопления 137Сs.

    Поступление радионуклидов зависит от времени и форм нахождения в почве, от концентрации доступных форм в корнеобитаемом слое.

    После аварии на ЧАЭС наиболее интенсивно поступление цезия происходило в первые 2 года. К концу 5-го года содержание обменного цезия в почве уменьшилось в 3 и более раз и вышло на стационарный уровень. Таким образом, со временем уменьшается содержание доступных для растений форм цезия-137 и снижается его поступление в растения. Подвижность и доступность стронция-90 практически не изменяется со временем, поэтому он находится в водорастворимой и обменной формах, которые хорошо доступны для корневого усвоения.


    1.2 Влияние кислотности почв на поступление радионуклидов в растительность


    Установлена отрицательная зависимость между содержанием обменного кальция, уровнем кислотности почвенного раствора и поступлением в растения стронция-90. Чем больше в почве обменного кальция и чем меньше кислотность почвенного раствора, тем меньше коэффициенты перехода стронция-90 в растения. Эта закономерность проявляется и при поступлении цезия-137 в растения, но связь менее сильная. Для многолетних бобовых злаковых трав, кукурузы и картофеля коэффициенты корреляции находятся в пределах от -0,52 до -0,93. Особенно тесная связь исследуемых параметров наблюдается на дерново-подзолистых супесчаных и песчаных почвах, а также на аллювиальных песчаных и слоистых почвах. С поступлением 137Сs эта связь также проявляется, но слабее. Для торфяно-болотных почв характерна та же закономерность, что и для дерново-подзолистых.


    Таблица 1.2 - Влияние кислотности почв на содержание цезия-137 в кормах

    КультурыПродукцияВлажностьрН KCl3,9-4,34,3-4,7Более 4,7Травы естественных сенокосовсено1620,016,514,4сенаж5510,78,87,7силос756,04,94,3зеленая масса824,33,53,1Многолетние злаковые травысено1616,414,611,0сенаж558,77,85,9силос754,94,33,3зеленая масса823,53,12,4

    Содержание 90Sr в урожае многолетних злаковых трав на торфяно-болотной почве в зависимости от уровня кислотности при плотности загрязнения 37 кБк/м2, КП позволяющего существенно уменьшить поступление 90Srв растения за счет антагонизма катионов, что способствует частичному переводу радионуклидов в необменное состояние. Однако, как видно из данных таблицы 1.3 и рис. 1.1, более информативным является содержание в почвах обменного кальция, чем показатель их обменной кислотности. Коэффициенты перехода радионуклидов из супесчаных почв снижаются в 1,7-2,0 раза по мере повышения содержания обменного кальция с 550 до 2000 мг СаО на кг почвы .


    Рис. 1.1 - Влияние плодородия дерново-подзолистых супесчаных почв на поступление радионуклидов в многолетние злаковые травы, Бк/кг (1989-1993 гг.)


    Таблица 1.3 - Влияние кислотности почвы на Кп 137Cs и 90Sr в многолетних злаковых травах

    РадионуклидырН KCl4,6-5,05,1-5,55,6-6,06,1-6,56,6-7,07,1-7,8СаО, мг/кг почвы5507401044168020081984137Cs5,7±0,25,3±0,25,3±0,13,7±0,32,9±0,33,0±0,290Sr12,4±0,412,0±0,38,0±1,77,2±0,87,2±0,37,0±0,1

    По мере повышения содержания обменного кальция с 550 до 2000 мг СаО на кг почвы Кп137Cs и 90Srснижается в 1,5-2 раза. Изменение кислотности почвенного раствора от кислого интервала (рН = 4,5-5,0) к нейтральному (рН = 6,5-7,0) снижает переход стронция-90 в растения в 2-3 раза.

    Дальнейшее насыщение почвы свободными карбонатами кальция сдвигает реакцию в щелочной диапазон, однако это уже не сопровождается уменьшением поступления радионуклидов в растения.

    На карбонатных почвах коэффициент накопления стронция-90 снижается до 3-х раз, потому что происходит необменная фиксация 90Srс образованием карбонатных солей. На этих почвах Кп137Csувеличивается до 4-х раз, т.к. здесь 137Csсвязывается водорастворимыми органическими соединениями, которые легко его освобождают в виде доступных ионов. Установлено, что чем больше насыщенность почвы обменными основаниями, тем меньше коэффициент перехода 137Csи 90Srв растения.

    Торфяно-болотные почвы бедны по содержанию калия, кальция и магния. Как правило, это кислые почвы, поэтому Кп137Csи 90Srна этих почвах в 5-20 раз больше, чем на дерново-подзолистых.

    Оптимальные показатели кислотности (рН) колеблются в значительных пределах и зависят от типа и гранулометрического состава почвы, обеспеченности ее гумусом и набора культур в севооборотах. На основании исследований, проведенных в республике, определены оптимальные параметры реакции почв (рН в КCl) в зависимости от гранулометрического состава, которые на дерново-подзолистых почвах составляют:

    глинистые и суглинистые - 6,0-6,7,

    супесчаные - 5,8-6,2,

    песчаные - 5,6-5,8.

    На торфяно-болотных и минеральных почвах сенокосов и пастбищ оптимальные параметры составляют соответственно 5,0-5,3 и 5,8-6,2 .

    Установлено, что минимум накопления радионуклидов в урожае различных культур чаще всего соответствует оптимальному уровню реакции почвенной среды и степени насыщенности почв основаниями, которые достаточны и необходимы для обеспечения максимально возможного урожая соответствующих культур. Это позволяет использовать величину pHKCl (которая систематически определяется агрохимической службой на каждом рабочем участке поля) в качестве интегрального показателя насыщенности почв основаниями при прогнозе доступности растениям радионуклидов, особенно 90Sr.

    Известкование является одним из наиболее важных приемов повышения продуктивности сельскохозяйственных угодий. При внесении в кислую почву извести в почвенном растворе резко уменьшается концентрация водорастворимых ионов, увеличивается содержание подвижного кальция и магния, что влияет на доступность радионуклидов растениям, особенно 90Sr.

    Эффект снижения поступления радионуклидов в урожай от известкования в дозах, рассчитанных для нейтрализации полной гидролитической кислотности, в сочетании с удобрениями колеблется в больших пределах. Это зависит от многих факторов, а именно: гранулометрического состава, степени кислотности почв, обеспеченности их гумусом, элементами минерального питания и других свойств, а также биологических особенностейвозделываемых культур .

    Известкование кислых почв направлено не только на ограничение поступления радионуклидов в растениеводческую продукцию, но и повышение плодородия почв, а также урожая. Действие извести более заметно в длительных стационарных полевых опытах на кислых дерново-подзолистых почвах. Таким примером может быть стационар Гомельской опытной станции, заложенный в 1986 году на среднекислой, бедной питательными веществами и гумусом дерново-подзолистой рыхлосупесчаной почве с плотностью загрязнения 137Cs - 296 кБк/м2.Известкование в дозах из расчета нейтрализации полной гидролитической кислотности на фоне N90P90K90 снизило содержание 137Csв зерне и соломе озимой ржи в 2 раза. Повышение дозы извести до уровня 1,5 гидролитической кислотности (6,5 т/га), равно как и повторное известкование в 1992 году из расчета нейтрализации полной гидролитической кислотности, способствовало некоторому снижению накопления137Csтолько в соломе. Эти данные согласуются с результатами исследований Бондаря П.Ф., Лощилова Н.А., Дутова А.И., показавших, что дополнительное внесение мелиорантов с целью снижения поступления 137Csв урожай на произвесткованных почвах является малоэффективным агротехническим приемом .

    Обобщение большого количества экспериментальных данных позволило сделать вывод, что минимальное накопление радионуклидов в растениеводческой продукции при прочих равных условиях возделывания сельскохозяйственных культур отмечено при оптимальной реакции почвенной среды. В этой связи основной целью известкования на землях, подвергшихся радиоактивному загрязнению, является нейтрализация кислотности почвы и насыщение ее поглощающего комплекса кальцием и магнием.

    Основная потребность в известковых удобрениях определяется в соответствии с «Инструкцией определения дополнительной потребности материально-технических ресурсов для сельского хозяйства в зоне радиоактивного загрязнения» . На минеральные земли с плотностью загрязнения 137Cs 5,0 и более Ки/км2 (185 кБк/м2) и 90Sr 0,3 и более Ки/км2 (11 кБк/м2) и на торфяные почвы с плотностью загрязнения 137Csболее 1,0 Ки/км2 (37 кБк/м2) и 90Srболее 0,15 Ки/км2 (5,5 кБк/м2) предусматривается дополнительное внесение извести с целью ускоренного доведения реакции почв до оптимальных значений. На дерново-подзолистые супесчаные почвы с рН 5,6-6,0 и плотностью загрязнения 137Cs 1-5 Ки/км2 (37-185 кБк/м2) дополнительное выделение извести предусматривается для поддержания кислотности в оптимальном диапазоне рН. Все почвы I-II групп кислотности подлежат первоочередному известкованию в связи с высоким переходом радионуклидов в растения.

    Таким образом, внесение извести является традиционным эффективным способом снижения поступления радионуклидов 90Srи 137Csиз почвы в растения. При этом в почвенном растворе резко уменьшается концентрация водорастворимых ионов, увеличивается содержание подвижного кальция и магния, что снижает доступность радионуклидов растениям, особенно 90Sr.


    1.3 Влияние содержания в почве органического вещества на поступление радионуклидов в растительность


    На переход цезия и стронция в растения оказывает влияние органическое вещество почвы. Гумусовые кислоты, особенно гуминовая кислота, образуют сложные комплексы с радионуклидами или гуматы, поэтому из органических комплексов доступность стронция снижается в 2-4 раза, а цезия - в 1,5 раза. Гумус - это совокупность органических соединений, находящихся в почве, но не входящих в состав живых организмов или их остатков, сохраняющих анатомическое строение. Гумус составляет 85-90 % органического вещества почвы и является важным критерием при оценке её плодородности. Гумус составляют индивидуальные (в том числе специфические) органические соединения, продукты их взаимодействия, а также органические соединения, находящиеся в форме органо-минеральных образований . Повышенная биологическая доступность радионуклидов на торфяно-болотных почвах связана со способностью органического вещества фиксировать ионы радионуклидов на поверхности органических коллоидов, поэтому не обеспечивается прочная сорбция радионуклидов и увеличивается их доступность растениями. Кроме этого на торфяно-болотных почвах повышена кислотность почвенного раствора, что обеспечивает хорошую растворимость солей радионуклидов и их доступность растениям.

    Наиболее доступны для растений радионуклиды, находящиеся в почве в растворенном виде. Однако растения могут извлекать химические элементы, в том числе и радионуклиды, из твердой фазы почвы. Кислые корневые выделения растений способны растворять относительно подвижные формы радионуклидов, связанные в минерально-обломочной фракции почв и растворимые в слабых кислотах (обменные, сорбционные и др.). Сорбция на гумусовом веществе с последующим переходом в необменные формы делает радионуклиды слабо доступными для растений.

    По данным учёных НИРУП «Институт почвоведения и агрохимии», весьма эффективным способом снижения поступления радионуклидов и нитратов в урожай сельскохозяйственных культур являются медленнодействующие удобрения (карбамид и сульфат аммония с добавками гуматов). Применение этих удобрений позволяет в среднем снизить содержание 137Cs на 20%, а 90Sr на 12% в урожае большинства сельскохозяйственных культур по сравнению с обычными формами азотных удобрений (аммиачная селитра, мочевина) при увеличении урожайности на 25%. На тех почвах, где основная масса радионуклидов прочно связана в гумусовых горизонтах, наблюдается снижение коэффициентов накопления растениями радионуклидов (КН) .

    Также проведено изучение распределения 137Сs и 90Sr по группам и молекулярно-массовым фракциям гумусовых веществ. При взаимодействии радионуклидов с органическими соединениями происходит образование сложных органо-минеральных комплексов и комплексно-гетерополярных солей. Исследовано влияние органическихлиганд на молекулярно-массовое распределение углерода, радиоцезия и радиостронция. Изучено поступление 137Сs и 90Sr в растения под влиянием искусственных комплексонов и гуминовых кислот, а также из разных органо-минеральных источников из водных растворов, так из различных почв.

    Диапазон различия в содержании органического вещества в пределах одной разновидности почв на большинстве опытных участков может быть невелик. Повышение содержания гумуса в дерново-подзолистых супесчаных почвах от минимального (1,0-1,5%) до оптимального (2,0-3,0%) сопровождалось снижением в 1,5 раза поступления 137Сs и 90Sr в многолетние травы.


    Таблица 1.4 - Влияние содержания гумуса в дерново-подзолистых супесчаных почвах на поступление радионуклидов в многолетние злаковые травы, КП (1989-1993 гг.)

    РадионуклидыСодержание гумуса, %1,0-1,51,6-2,02,1-3,03,1-3,5137Сs5,9±0,45,6±0,24,7±0,53,4±0,390Sr15,9±0,315,7±0,412,2±1,18,2±0,9

    В зоне радиоактивного загрязнения может быть оправданным и поддержание более высокого уровня содержания гумуса в почве (3,1-3,5%) для дальнейшего снижения поступления радионуклидов в продукцию при наличии дешевых источников органического вещества.

    Представление о противоположных функциях разных фракций гумусовых кислот помогает понять особенности миграции элементов.

    Вывод о противоположном действии гуминовых и фульвокислот нашел подтверждение и при исследовании форм нахождения радионуклидов, образовавшихся во время катастрофы на Чернобыльской АЭС . Высокую радиоактивность наблюдали лишь в пробах природных вод высокой цветности, т.е. с большими содержаниями фульвокислот. При фазовом химическом анализе почв района Чернобыля показано, что основная доля радионуклидов связана с труднорастворимыми фракциями, прежде всего с гуминовыми кислотами почвы. В условиях Украины и Белоруссии тенденция к удерживанию радионуклидов в почвах значительно сильнее, чем тенденция к их рассеянию поверхностными водами.

    Итак, можно сделать вывод,что:

    гуминовые кислоты обладают высокой сорбционной емкостью по отношению к ионам загрязняющих и рудных элементов, а также изотопных носителей долгоживущих радионуклидов: 1 г гуминовых кислот сорбирует 30 мг цезия, 18 мг стронция, 18 мг меди, 60-150 мг свинца, 80 мг хрома, 300 мг ртути, 300-600 мг золота, 85-100 мг палладия.

    гуминовые кислоты - эффективный геохимический барьер, ограничивающий подвижность ионов металлов.

    миграционная способность элементов в конкретных ландшафтных условиях зависит от состава гумусовых кислот почв и вод и во многом определяется конкуренцией процессов комплексообразования ионов металлов с фульво- и гуминовыми кислотами .


    1.4 Влияние режима увлажнения на поступление радионуклидов из почвы в растительность


    Известно, что количество катионов цезия и стронция, вытесняемых из почвы в раствор, при постоянной концентрации возрастает с увеличением объема раствора, что предполагает повышенное накопление радионуклидов растениями .

    Общеизвестно увеличение перехода 137Сs и 90Sr в травы естественных сенокосов на переувлажненных почвах по сравнению с сеяными травами на автоморфных почвах. Однако здесь оказывает влияние комплекс факторов, включая различия в окультуренности почв, видовом составе трав, удобрениях и др. Имеются сведения, что при разных режимах увлажнения почв могут не изменяться коэффициенты накопления радионуклидов растениями, но возрастает общий вынос радионуклидов за счет увеличения биомассы растений .

    Рерих П.А. и Моисеев И.Т. установили, что поступление 137Сs в зерновые и крупяные культуры на выщелоченных черноземах находится в обратной корреляционной зависимости от суммы осадков за вегетационный период и запасов влаги в метровом слое почвы .

    Для определения влияния режима увлажнения почв на поступление радионуклидов в растения в 1992-1994 гг. проводились исследования на сенокосах Ветковского, Лоевского и Хойникского районов Гомельской области (табл. 1.5) . На одном типе почв, различающихся степенью гидроморфизма и, следовательно, режимом увлажнения, подбирались участки сенокосов сходного ботанического состава трав. Влажность почв в период максимального роста и уборки трав различалась и составляла, соответственно, 4,5, 14,8 и 21,7%. Кислотность почв трех участков была близкой к оптимальной, а содержание обменных катионов кальция повышалось по мере возрастания степени увлажнения. Доля обменных форм 137Сs последовательно повышалась от 9,6% на автоморфных до 10,7 на глееватых почвах и до 12,3% - на глеевых. Одновременно многократно возрастал переход 137Сs и 90Sr из почвы в растения ежи сборной. Долевое содержание водорастворимых и обменных форм 90Sr также заметно повышалось на временно избыточно увлажненных и глееватых супесчаных почвах.


    Таблица 1.5 - Влияние режима увлажнения почв и форм нахождения радионуклидов на их переход в растения ежи сборной (Хойникский район, 1994 г.)

    ПоказательДерново-подзолистые суглинистые почвы, развивающиеся на легких суглинкахВременно избыточно увлажненныеГлееватыеГлеевыеpH KCl5,84,874,25Содержание в почве К2О110142148СаО620520260MgO270114300Содержание 137Cs в почве Бк/кг131013701600В т.ч. в вытяжках, %H2O0,040,040,041M CH3COONH49,610,712,31M HCl9,89,413,66M HCl80,5679,8674,03Содержание 137Cs в растениях Бк/кг305070Ku0,020,040,04Содержание 90Sr в почве Бк/кг120170270В т.ч. в вытяжках, %H2O4,53,15,91M CH3COONH445,250,451,01M HCl43,740,842,66M HCl6,65,71,5Содержание 90Sr в растениях Бк/кг240550900Ku23,23,3

    Повышенный переход 137Сs в растения ежи сборной по мере нарастания степени гидроморфизма наблюдался и на большом массиве осушенных дерново-заболоченных песчаных почв в Лоевском районе Гомельской области (табл. 1.6 и рис. 1.3). Здесь также отмечено заметное увеличение

    доли обменных форм 137Сs на глеевых почвах по сравнению с временно избыточно увлажненными и глееватыми. В значительно большей степени (до 27 раз) различались коэффициенты накопления 137Сs растениями ежи сборной.


    Таблица 1.6 - Влияние гидроморфности дерновых заболоченных песчаных почв на переход 137Сs в растения ежи сборной (Лоевский район, 1993 г.)

    ПоказательСтепень гидроморфности почвВременно избыточно увлажненныеГлееватыеГлеевыеpH KCl5,55,65,9Содержание в почве обменных катионов мг.экв/ 100г почвы Са2,464,688,8Mg1,111,011,9гумус, %132017401400Содержание 137Cs в почве Бк/кг0,10,10,9В т.ч. в вытяжках, % H2O3,53,317,51MCH3COONH413,010,65,01MHCl76,283,070,56MHCl76,283,070,5Содержание 137Cs в растениях Бк/кг27813737951Ku0,210,795,68Урожай сена ц/га19,030,348,1

    Если учесть, что урожай сена увеличивался с повышением степени увлажнения почв, то суммарный вынос радионуклида с гектара площади на дерново-глееватых почвах был в 6 раз, а на дерново-глеевых - в 54 раза выше, чем на временно избыточно увлажненных почвах. Проведенные исследования показали, что осушение не обеспечивает единого режима влажности почв всего массива и не устраняет имеющихся различий в увлажнении между почвенными разновидностями.


    Рис. 1.2 - Влияние гидроморфности дерновых заболоченных песчаных почв на переход радионуклидов в растения ежи сборной, Бк/кг


    В результате осушения режим влажности дерново-глеевых почв приближается к оптимальному. Это значит, что оптимум влажности почвы длится 100 дней, уровень грунтовых вод (УГВ) колеблется в пределах 1,13-1,59 м, в дерново-глееватых почвах оптимум увлажнения - 90 дней, УГВ - 1,35-1,79 м. На повышенных элементах рельефа, где развиты временно избыточно увлажненные почвы, больше период иссушения, здесь оптимум влажности почвы наблюдается только в течение 70 дней, а УГВ колеблется в пределах 1,60-2,35 м. Исследуемые почвы характеризуются низким содержанием обменного калия и типичным повышением содержания обменных форм кальция и магния, а также содержания гумуса по мере нарастания степени увлажнения почв. Все почвы характеризовались близким уровнем плотности загрязнения 137Сs, в пределах от 481 до 518 кБк/м2. Учеты урожая проводились в 20-кратной повторности на посевах ежи сборной третьего года пользования.

    Для изучения причин значительных различий переходов радионуклидов в кормовые культуры (многолетние злаковые травы), возделываемые в хозяйствах загрязненной зоны, нами проведены исследования по определению форм нахождения радионуклидов в почвах в зависимости от типа почвообразования, характера и степени увлажнения почв на рыхлых и связных почвообразующих породах. В таблице 1.7 приведены результаты определений форм нахождения 137Сs .


    Таблица 1.7 - Формы нахождения 137Сs в дерновых заболоченных и дерново-подзолистых заболоченных почвах, % (1995 г.)

    ПочвыH2OCH3COONH41M HCl6M HClДерновые, временно избыточно увлажненные, развивающиеся на песках0,0310,68,780,7Дерново-глееватые развивающиеся на песках0,4819,115,764,7Дерново-глеевые, развивающиеся на песках0,524,026,748,8Дерновые, временно избыточно увлажненные карбонатные, развивающиеся на легких суглинках0,013,18,088,9Дерново-глееватые карбонатные, развивающиеся на легких суглинках0,045,14,390,6Дерново-глеевые карбонатные, развивающиеся на легких суглинках0,036,03,590,5Дерново-подзолистые, временно избыточно увлажненные, развивающиеся на легких суглинках0,049,69,880,6Дерново-подзолисто-глееватые, развивающиеся на легких суглинках0,0410,79,479,9Дерново-подзолисто- глеевые, развивающиеся на легких суглинках0,0712,313,674,0НСР 0950,0072,383,078,56

    Первое, что можно отметить, - это преобладание фиксированной формы 137Сs, которая составляет 48-90% в разных почвах. Второе - более высокое содержание 137Сs в обменной и непрочно фиксированной формах в почвах более увлажненных позиций. Третье - самое высокое содержание прочнофиксированных форм 137Сs в дерновых заболоченных карбонатных почвах. В таблице 1.8 приведены результаты определения форм наховождения90Sr в исследуемых почвах.

    Особенностью высоких переходов этого элемента из почвы в растения, как уже установлено и подтверждается нашими данными, является то, что значительная часть 90Sr находится в подвижной форме. Причем в почвах, развивающихся на песчаных породах, доля прочнофиксированной фракции несколько меньше, чем на суглинистых, но во всех почвах содержание этой фракции уменьшается с увеличением увлажнения.


    Таблица 1.8 - Формы нахождения 90Sr в дерновых заболоченных и дерново-подзолистых заболоченных почвах (1995 г.)

    ПочвыH2OCH3COONH41M HCl6M HClДерновые, временно избыточно увлажненные, развивающиеся на песках9,563,720,46,4Дерново-глееватые развивающиеся на песках14,967,614,84,7Дерново-глеевые, развивающиеся на песках11,168,912,27,8Дерновые, временно избыточно увлажненные карбонатные, развивающиеся на легких суглинках4,140,943,411,6Дерново-глееватые карбонатные, развивающиеся на легких суглинках9,142,440,38,2Дерново-глеевые карбонатные, развивающиеся на легких суглинках6,948,141,13,9Дерново-подзолистые, временно избыточно увлажненные, развивающиеся на легких суглинках4,545,243,76,6Дерново-подзолисто-глееватые, развивающиеся на легких суглинках3,150,440,85,7Дерново-подзолисто- глеевые, развивающиеся на легких суглинках5,951,042,61,5НСР 0951,44,73,92,1

    Следует также отметить более низкое содержание обменной формы 90Sr в дерновых заболоченных карбонатных почвах при любой степени увлажнения. Насыщение поглощающего комплекса этих почв свободными карбонатами сдвигает реакцию среды в щелочной диапазон, обеспечивая минимум подвижности радионуклидов в почвах. Увеличение степени гидроморфизма способствует усилению динамичности элементов, что приводит к большей доступности радионуклидов для произрастающих трав. Двухлетние исследования БелНИИ мелиорации и луговодства показали также большую значимость учета влажности почвы и определяющего ее уровня грунтовых вод в поглощении радионуклидов сельскохозяйственными растениями. При этом первостепенное значение имеет расстояние загрязненного слоя почвы от УГВ. Наибольшее поглощение радионуклидов многолетними трава-ми происходит при расстоянии уровня воды 35-55 см от загрязненного слоя почв.

    Как правило, осушенные массивы на загрязненной радионуклидами территории Белорусского Полесья представлены почвенными комплексами, включающими на одном сельскохозяйственном поле севооборота торфяные, торфяно-болотные, сработанные торфянисто-глеевые и песчаные почвы. При этом пониженные формы рельефа представлены торфяными и торфяно-глеевыми почвами, а повышенные - торфянисто-глеевыми и песчаными. Исследования показали, что минимальное загрязнение растительной продукции на комплексах таких почв достигается при поддержании уровня грунтовых вод на глубине 0,9-1,2 м от средней отметки поверхности поля. Диапазоны уровня грунтовых вод подобраны так, чтобы водопотребление основных видов растений на 30% обеспечивалось из подпахотного слоя почвы. При этом меньшие значения уровня грунтовых вод необходимо поддерживать при выращивании трав, более глубокие - при выращивании зерновых и пропашных культур. Общим правилом поддержания оптимального режима увлажнения загрязненных радионуклидами почв должно стать нахождение динамического равновесия, обеспечивающего, с одной стороны, максимальный урожай и тем самым «ростовое разбавление» радионуклидов, с другой - уменьшение объема почвенного раствора.

    По данным наших исследований, переход радиоцезия в многолетние злаковые травы повышался в 10-27 раз на дерново-глеевых и дерново-подзолисто-глеевых почвах по сравнению с автоморфными и временно избыточно увлажняемыми разновидностями этих почв. Практика подтвердила установленные закономерности. В зоне загрязнения, где преобладают переувлажненные дерново-подзолистые песчаные и торфяные, типичные для Полесья почвы, высокая степень загрязнения травяных кормов, молока и мяса наблюдается даже при относительно низких плотностях загрязнения: 137Сs - 7,4-185 и 90Sr - 11,1-7,4 кБк/м2. В то же время на окультуренных участках лессовидных и моренных суглинков Могилевской области продукцию с допустимым содержанием радионуклидов удается получать при плотности загрязнения 137Сs 740 кБк/м2.

    Таким образом, приведенные данные показывают исключительно высокую значимость учета степени гидроморфизма почв при прогнозе содержания радионуклидов в продукции сенокосов и пастбищ как на естественных заболоченных, так и на осушенных почвах. Учет степени гидроморфизма почв необходим и при долгосрочном прогнозе очищения почв от радионуклидов.

    Детальное изучение вопросов, влияющих на поведение долгоживущих радионуклидов в различных почвах Беларуси, позволяет сделать следующее заключение:

    За период наблюдений с 1986 по 1997 г. мощность экспозиционной дозы (МЭД) на постоянных пунктах наблюдений значительно снизилась. В первые послеаварийные месяцы этот процесс был обусловлен распадом короткоживущих радионуклидов. В отличие от Гомельской области на постоянных пунктах наблюдений Могилевской наблюдался меньший изначальный размер МЭД и более плавное ее снижение в последующие годы, что объясняется характером выпадения радионуклидов. Факторы, влияющие на течение миграционных процессов в почве, оказывают косвенное влияние и на параметры МЭД.

    Для всех почв характерно извлечение водой незначительной доли (0,3-0,7%) 137Сs. В обменной форме, легко доступной корневой системе растений, его содержание колеблется в пределах от 2,1 до 10,4%. Ближний при определенных условиях резерв радиоцезия, потенциально доступного для растений, составляет 14,0-23,8% валового его содержания. Основная доля радионуклида (69,8-82,0%) находится в прочносвязанной форме, в том числе и внедренной в кристаллическую решетку глинистых минералов. Доступность растениям 137Сs со временем существенно уменьшается в процессе «старения» радионуклида и фиксации его в почве. За период с 1987 по 1993 г. доля подвижного радиоцезияуменьшилась с 29-74% до 5-29% валового (т.е. в среднем более чем в 3 раза). В последние годы скорость фиксации 137Сs уменьшилась. Для 90Sr характерно преобладание легко доступных для растений обменной и водорастворимой форм, которые в сумме составляют 53-87% валового содержания. Доля прочносвязанной фракции, извлекаемой 6М HCl, невелика и колеблется от 3 до 19%. Обнаруживается высокая биологическая доступность 137Сs на торфяно-болотных почвах. Содержание 137Сs в водной вытяжке на порядок выше, чем его содержание в аналогичной вытяжке на минеральных почвах. Выявлены различия, связанные со степенью минерализации торфяной массы.

    На всех изучаемых типах почв происходит, хотя и медленно, миграция вниз по профилю 137Сs и 90Sr. С увеличением степени увлажнения почв, темпы миграции увеличиваются. В почвах с ненарушенной дерниной основное количество радионуклидов содержится в 0-5-сантиметровом слое, а в почвах сельскохозяйственного использования практически все количество 137Сs находится в пахотном горизонте.

    Скорость миграции 90Sr значительно выше, чем 137Сs, что связано с физико-химическими особенностями этих радионуклидов. Наличие вторичного загрязнения почв и растений радионуклидами за счет их горизонтальной миграции очевидно, и его необходимо учитывать в сельском хозяйстве. Гранулометрический состав почв в значительной степени определяет их поглотительную способность. Сорбционная способность почв зависит от степени дисперсности почвенных частиц. Коэффициенты перехода радионуклидов в растения, произрастающие на дерново-подзолистых суглинистых почвах, в 1,5-2 раза ниже по сравнению с дерново-подзолистыми песчаными почвами.


    2. Изучение накопления радионуклидов в травостое лугов различного режима увлажнения


    Результаты многолетних исследований говорят о высоких размерах накопления радионуклида, особенно 137Сs, травостоем кормовых угодий на торфяно-болотных почвах. Так, если для дерново-подзолистых супесчаных почв величина коэффициента пропорциональности составляет для многолетних знаковых трав 05-3, то для торфяно-болотных почв 3,4-8.

    Для рационального использования таких кормовых угодий в условии радиоактивного загрязнения необходимо:

    проводить прогноз содержания Cs и Sr в кормах (зеленая масса, сено) с учетом плотности загрязнения и основных агрохимических свойств почв;

    увеличить их продуктивность;

    обеспечить получения дешевых кормов, отвечающих РДУ-99 по содержанию радионуклидов, за счет применения различных агротехнических и агрохимических мероприятий.

    В ряде нормативных документов, действующих на территории Белоруссии, России и Украины, в условиях производства на загрязнённых территориях для прогноза содержания 137Сs и 90Sr в сельскохозяйственных культурах и кормах на всех типах почв используются только два агрохимических показателя: содержание подвижного калия (для прогноза 137Сs) и величина обменной кислотности рН (КСl) (для прогноза 90Sr)

    В работах ряда отечественных и зарубежных учёных приводятся данные, свидетельствующие о наличии более тесной корреляционной зависимости между коэффициентами перехода 137Сs и 90Sr и другими агрохимическими показателями луговых почв (гидролитической кислотностью, содержанием MgO и СаО, содержанием гумуса, степенью насыщенности основаниями и др.)


    2.1 Цель, задачи, материал и методика исследований


    Цель работы: 1. Установить корреляционные зависимости между величиной перехода 137Сs и 90Sr в травостои низинных лугов и основными агрохимическими свойствами торфяно-болотных почв.

    Составить уравнения линейной и множественной регрессии, позволяющие прогнозировать величину коэффициентов перехода радионуклидов и степень загрязнения травостоя в отдаленный период после аварии на ЧАЭС.

    На протяжении периода 1995-2005 изучали влияние основных агрохимических свойств торфяно-болотных почв на изменение величины коэффициентов перехода цезия и стронция в естественный травостой и урожай многолетних злаковых трав.

    На наблюдательных площадках проведен учет урожая многолетних трав и отбор пробных снопов в 4-хкратной повторности 2 раза в год для определения удельной активности радионуклидов, а также почвенных образцов на глубину пахотного горизонта для определения основных агрохимических показателей.

    Почвенная, радиологическая и агрохимическая характеристики торфяно-болотных почв на наблюдательных площадках представлены в табл. 2.1

    Таблица 2.1 - Радиологическая и агрохимическая характеристики торфяно-болотных почв наблюдательных площадок

    Разновидность т-б почв низинного типаПлотность загрязненияАгрохимические показатели137Сs90SrЗольностьpHP2O5K2OCaoMgOИоккБк/м2%мг/кг почвы11Торфяно-глеевая (40 см) на хорошо разложившихся тростниково-осоковых торфах20866335,1260152107906720,435Торфяно-глеевая (40 см) на хорошо разложившихся осоково-тростниковых торфах26182515,4181284101806700,5118Торфяно-глеевая (40 см) на хорошо разложившихся шейхцер-осоковых торфах314113435,3235193122206540,4813Торфяно-маломощная (50 см) на средне разложившихся осоковых торфах11444205,1624321116707140,657Торфяно-маломощная(60 см) на хорошо разложившихся древесно-осоковых торфах, подстилаемых песками235-727,3427421141808601,0014Торфяно-маломощная (65 см) на средне разложившихся осоковых торфах8339205,3498502124508100,721Торфяно-маломощная (70 см) на слаборазложившихся гипново-тростниково-осоковых торфах18947175,1290202127507620,4615Торфяно-маломощная (80 см) на среднеразложившихся осоковых торфах7341205,2645593124808160,762Торфяно-маломощная (105 см) на хорошоразложившихся гипново-тростниково-осоковых торфах12045175,1432163134908040,5116Торфяно-маломощная (120 см) на хорошо разложившихся гипново-тростниково-осоковых торфах12641295,1437207105807140,524Торфяно-маломощная (150 см) на средне разложившихся осоково-тростниковых торфах14057245,2369443126508760,626Торфяно-маломощная(200 см) на хорошо разложившихся древесно-осоковых торфах2506516,55,64766601237510850,83Эта таблица свидетельствует о наличии более тесной корреляционной связи между плотностью загрязнения цезием и стронцием и другими агрохимическими показателями. Можно проследить, зависимость содержания радионуклидов от глубины почв низинного типа и агрохимических показателей. Максимальное количество радионуклидов содержится в Торфяно-глеевая (40 см) на хорошо разложившихся шейхцер-осоковых торфах. При этом на этой почве сравнительно низкий показатель калия, фосфора и Иок по сравнению с другими агрохимическими показателями. Минимальное количество зарегистрировано на Торфяно-маломощная (80 см) на среднеразложившихся осоковых торфах. Здесь наблюдаются выше средних агрохимические показатели.

    Плотность загрязнения торфяно-болотных почв137Сs и 90Sr и основных агрохимические показатели определяли по общепринятым методикам. Степень окультуренности почв определяли с помощью интегрированного показателя - индекса агрохимической окультуренности (Иок), используемого для количественной оценки плодородия почв, варьируемого в пределах от 0,2 до 1,0 и рассчитанного с учетом обменной кислотности, содержания подвижных форм оксидов фосфора и калия по следующей формуле:


    Иок= (pH-3,5)/4,8+ (P2O5-100)/2100+(K2O-100)/2700

    радионуклид почва травостой увлажнение

    Для количественной оценки поступления радионуклидов из почвы в растения рассчитывали коэффициенты пропорциональности Кп:


    Кп=(Бк/кг):(кБк/м2)


    Полученные данные обрабатывались методом дисперсионного и регрессионного анализов с использованием компьютерного программного обеспечения . Коэффициент перехода цезия и стронция в зависимости от типа тровостоя отображены в таблице 2.2 и 2.3


    Таблица 2.2 - Коэффициент перехода 137Сs в основные виды кормов в зависимости от обеспечения калием торфяно-болотных почв

    Тип травостояСодержание подвижного калия мг/кг почвыменее 250251-500501-1000Более 1000Низинные торфяно-болотные почвы мощностью торфа более 1мСено (влажность 16%)Естественный злаково-разнотравный27,7617,7210,609,54Сеянный злаковый7,994,853,373,05Сеянный бобово-злаковый7,204,363,032,74Сенаж (влажность 55%)Естественный злаково-разнотравный14,849,485,675,1Сеянный злаковый4,274,163,142,85Сеянный бобово-злаковый3,843,752,832,55Силос (влажность 75%)Естественный злаково-разнотравный8,265,273,162,84Сеянный злаковый2,381,441,00,9Сеянный бобово-злаковый2,141,290,910,82Зеленая масса (влажность 82%)Естественный злаково-разнотравный5,963,802,272,05Сеянный злаковый1,711,040,720,65Сеянный бобово-злаковый1,540,950,650,6Низинные торфяно-болотные почвы мощностью торфа менее 1мСено (влажность 16%)Естественный злаково-разнотравный22,2114,188,487,63Сеянный злаковый6,393,882,72,44Сеянный бобово-злаковый5,763,492,422,19Сенаж (влажность 55%)Естественный злаково-разнотравный11,877,584,544,08Сеянный злаковый3,423,332,512,28Сеянный бобово-злаковый3,073,02,262,04Силос (влажность 75%)Естественный злаково-разнотравный6,614,222,532,27Сеянный злаковый1,91,150,80,72Сеянный бобово-злаковый1,711,030,730,66Зеленая масса (влажность 82%)Естественный злаково-разнотравный4,773,041,821,64Сеянный злаковый1,370,830,580,52Сеянный бобово-злаковый1,230,760,520,48

    В данной таблице можно проследить связь между содержанием подвижного калия и типом травостоя.

    Коэффициент перехода 137Сs больше в естественно злаково-разнотравном сене, влажностью 16% с содержанием калия менее 250 мг/ кг почвы. Самый низкий в сеянобобово злаковом травостое зеленой массы, влажностью 82% при содержании обменного калия более 1000 мг/кг почвы. Также можно отметить, что коэффициенты перехода отличаются и от мощности торфа. Меньше всего по всем показателям коэффициент на низинных торфяно-болотных почвах менее 1м.


    Таблица 2.3 - Коэффициент перехода 90Sr в основные виды кормов в зависимости от величины обменной кислотности торфяно-болотных почв

    Тип травостояpH (KCl)менее 4,54,5-5,55,6-6,0более 6,0Низинные торфяно-болотные почвы мощностью торфа более 1мСено (влажность 16%)Естественный злаково-разнотравный20,0016,5114,4013,68Сеянный злаковый16,3514,5511,0010,45Сеянный бобово-злаковый23,7021,0915,9515,16Сенаж (влажность 55%)Естественный злаково-разнотравный10,698,837,77,32Сеянный злаковый8,747,785,885,6Сеянный бобово-злаковый12,6711,288,538,12Силос (влажность 75%)Естественный злаково-разнотравный5,954,914,294,07Сеянный злаковый4,874,333,273,1Сеянный бобово-злаковый7,066,274,744,5Зеленая масса (влажность 82%)Естественный злаково-разнотравный4,283,543,082,93Сеянный злаковый3,53,122,362,24Сеянный бобово-злаковый5,084,523,453,25Низинные торфяно-болотные почвы мощностью торфа менее 1мСено (влажность 16%)Естественный злаково-разнотравный22,0018,1615,8415,05Сеянный злаковый17,9916,0112,111,5Сеянный бобово-злаковый26,0723,217,5516,68Сенаж (влажность 55%)Естественный злаково-разнотравный11,769,718,478,05Сеянный злаковый9,618,566,476,16Сеянный бобово-злаковый13,9412,419,388,93Силос (влажность 75%)Естественный злаково-разнотравный6,555,44,724,48Сеянный бобово-злаковый7,776,95,214,95Зеленая масса (влажность 82%)Естественный злаково-разнотравный4,713,893,393,22Сеянный злаковый3,853,432,62,46Сеянный бобово-злаковый5,594,973,83,58

    Коэффициент перехода 90Sr больше в естественно злаково-разнотравном сене, влажностью 16% с величиной обменной кислотности рН менее 4,5. Самый низкий в сеяно-бобово-злаковом травостое зеленой массы, влажностью 82% с величиной обменной кислотности рН более 6. Также можно отметить, что коэффициенты перехода отличаются и от мощности торфа. Меньше всего по всем показателям коэффициент на низинных торфяно-болотных почвах более 1м.

    Таким образом, проанализировав таблицы 2.3 и 2.2, можно сделать вывод, что содержание радионуклидов больше в сухом травостое и различается от мощности торфа, если радиостронций накапливается больше в почвах с мощностью торфа менее 1 метра, то радиоцезий, наоборот, более 1 метра.

    Установлено, что величина коэффициента перехода в травостой низинного луга зависит от насыщенности почвенно-поглощающего комплекса торфяно-болотных почв калием; изменения величины обменной кислотности; содержанием органического вещества; степени ее окультуренности.

    Выявлена тесная связь между коэффициентом перехода 137Сs в травостой низинных лугов и следующими агрохимическими показателями: содержанием подвижного калия (r=-0,79);степенью окультуренности (r=-0.76);содержанием органического вещества (r=0,73);

    Sr в травостой низинных лугов и следующими агрохимическими показателями: содержанием подвижного калия (r=-0,77);степенью окультуренности (r=-0,75);содержанием органического вещества (r=0,65);величина обменной кислотности (r=0,73)

    По результатам многолетних исследований рассчитаны коэффициенты перехода радионуклидов в травяные корма из торфяно-болотных почв в зависимости от содержания подвижного калия и величины обменной кислотности pH, а также составлены уравнения линейной и множественной регрессии, позволяющие рассчитывать коэффициенты перехода радионуклидов в травостой по основным агрохимическим показателям этих луговых почв. Уравнения регрессии представлены в таблице 2.4.


    Таблица 2.4 - Уравнения регрессии для определения величины Кп137Сs и 90Sr в травостои низинных лугов на торфяно-болотных почвах

    137Сs90SrКп137Сs=-0,39K2O+34,53R2=0,62Кп90Sr=0,069K2O+10,07R2=0,59Кп137Сs=-62,05Иок+56,11R2=0,58Кп90Sr=-10,43Иок+13,56R2=0,56Кп137Сs=6,61Орган.в-во-525,4R2=0,53Кп90Sr=0,97Орган.в-во-72,45R2=0,42Кп137Сs=124Т-100,04R2=0,27Кп90Sr=0,26Т-17,95R2=0,49Кп137Сs=-36,12рН+214,07R2=0,26Кп90Sr=0,0014Са-9,02R2=0,36Кп137Сs=-229,9-6,19рН-0,22К2О+3,5Орган.в-воR2=0,64Кп90Sr=-11,53-3,94рН-0,12К2О+0,56Орган.в-воR2=0,52

    2.2 Анализ результаты исследований


    Минимальные величины коэффициентов перехода 137Сs (2,0-3,0) и 90Sr (6,0-10,0) в травостои низинных лугов наблюдаются при достижении оптимальных значений агрохимических свойств почв (величина обменной кислотности pH- 5,5-6,0; содержание подвижного калия- 1000-1200, подвижного фосфора- 800-1000 мг/кг почвы) и высоком уровне почвенного плодородия торфяно-болотных (Иок-0,9-1,0) за счет применения агрохимических и агротехнических приемов их улучшения (контрмер).

    Для прогноза содержания радионуклидов в травостоях низинных лугов в отдаленный периодпосле аварии целесообразно использовать коэффициенты перехода 137Сsи90Sr, установленные не только по содержанию подвижного калия (137Сs) и величине обменной кислотности (Кп90Sr) торфяно-болотных почв, но и величине комплексного агрохимического показателя - индекса окультуренности почв, учитывающих несколько почвенных характеристик одновременно.


    Выводы


    Авария на Чернобыльской АЭС повлекла за собой масштабное загрязнение земель Республики Беларусь. Загрязнение территории Беларуси с плотностью свыше 37 кБк/м2 цезием-137 составило 23% ее площади. В настоящее время радиационная обстановка не намного улучшилась. Наблюдается содержание радионуклидов в растительность за счёт их поступления и закрепления из почвы. Учитывая медленную миграцию радионуклидов в почвах, нельзя твердо говорить о чистом от радионуклидов урожае.

    Т.к. радионуклиды цезий и стронций являются природными заменителями калия и кальция, то установлена корреляционная связь накопления137Сs и90Sr в растениях от емкости поглощения почв и содержания обменного калия и кальция. Чем больше в почве присутствует обменного калия, тем интенсивнее происходит закрепление цезия. Также установлено, что чем больше в почве обменного кальция и чем меньше кислотность почвенного раствора, тем меньше коэффициенты перехода стронция-90 в растения. С содержанием гумуса также можно проследить связь: чем больше в почве содержится гумуса и следовательно гуминовых кислот - тем быстрее происходит процесс связывания радионуклидов в нерастворенные соединения

    В целом также оказывает влияние и комплекс факторов, включая различия в окультуренности почв, видовом составе трав, удобрениях и др. При разных режимах увлажнения почв могут не изменяться коэффициенты накопления радионуклидов растениями, но возрастает общий вынос радионуклидов за счет увеличения биомассы растений.


    Литература


    1.Агеец В.Ю. Система радиоэкологических контрмер в агросфереБеларуси. - Минск: Республиканское научно-исследовательское унитарное предприятие «Институт радиологии», 2001. 1. -250 с.

    .Аненков Б.Н. Основы сельскохозяйственной радиологии / Б.Н. Аненков, Е.В. Юдинцева. - М.: Агропромиздат, 1991. - 270 с.

    .Афанасик Г.И. Влияние водного режима почвы на интенсивность поступления радионуклидов в растительную продукцию // Мелиорация переувлажненных земель: Сб. науч. работ.-1995.- Т.XLII . С. 29-44.

    .Афанасiк Г.I. Механiзм уплыву воднагарэжымуглебы на iнтенсiўнасцьпаступленнярадыёнуклiдаў у раслiны // ВесцiАкадэмii аграрных навукБеларусi. - 1995. - №4. С. 8-12.

    .Афанасик Г.И. Проблемы мелиорации и использования загрязненных радионуклидами почв / Судас А.С., Алексеевский В.Е. // Основные положения концепции сельскохозяйственного производства в зоне радиоактивного загрязнения выбросами Чернобыльской АЭС: Материалы науч. конф. / Акад. с.-х. наук им. В.И. Ленина. - Минск, 1990. С. 65-67.

    .Беларусь и Чернобыль: второе десятилетие: Сб. МЧС Беларуси / Под ред. И.А. Кеника. - Барановичи, 1998. - 92 с

    .Богдевич И.М. Основы ведения сельского хозяйства / Агеец В.Ю, Фирсакова С.К. // Экологические, медико-биологические и социально-экономические последствия катастрофы на ЧАЭС в Беларуси /Под ред. Е.Ф. Конопли, И.В. Ролевича. - Минск, 1996. - С. 52-102.

    .Богдевич И.М. Рациональное использование загрязнённых радионуклидами почв Беларуси / Шмигельская И.Д., Тарасюк С.В. // Природные ресурсы. - 1997. - №4. - С.15 - 28.

    9.Bogdevich I.M. Accumulation of radionuclides of cesium-137 and strontium-90 by farm crops depending on soil properties / AgeyetsV.Yu., Shmigelskaya I.D. // Belarus-Japan Symposium "Acute and Late Consequences of Nuclear Catastrophes: Hiroshima-Nagasaki and Chernobyl",

    .Бондарь П.Ф., Дутов А.И. Параметры перехода радиоцезия в урожай овса на произвесткованной почве в зависимости от применения минеральных удобрений и химических мелиорантов // Проблемы сельскохозяйственной радиологии: Сб. науч. тр. / Украинский науч.-исслед ин-т с.-х. радиологии; Под ред. Н.А. Лощилова. - Киев, 1992. - Вып. 2. - С. 125-132.

    .Дорожко С.В. Защита населения и объектов в чрезвычайных ситуациях. Радиационная безопасность/ Ролевич И.В., Пустовит В.Т.// В 3 ч.: пособие для студентов Вузов. Минск: Дикта, 2010.- 291 с.

    .Инструкция определения дополнительной потребности материально-технических ресурсов для сельского хозяйства в зоне радиоактивного загрязнения. - Минск, 1999. - 26 с.

    .Круглов, В.А. Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Радиационная безопасность / В.А. Круглов, С.П. Бабовоз, В.Н. Пилипчук и др. / Под ред. В.А. Круглова. - Минск: Амалфея, 2003. - 368 с

    .Лисовский Л.А. Радиационная экология и радиационная безопасность / Лисовский Л. А. Мозырь: МГПИ, РИФ «Белый ветер», 1997. 52 с.

    .Люцко, А.М. Чернобыль: шанс выжить / А.М. Люцко, И.В. Ролевич, В.И. Чернов.- Минск: Полымя, 1996. -181 с

    .Павлоцкая Ф.И. Миграция радиоактивных продуктов глобальных выпадений в почвах. - М.: Атомиздат, 1974.- 215 с.

    .Пироговская Г.В. Медленнодействующие удобрения. - Минск: Белорус. научно-исслед. ин-т почвоведения и агрохимии. -2000.- 287 с.

    .Проблемы радиологии загрязненных территорий / Юбилейный тематический сборник/ Цыбулько Н.Н., Черныш А.Ф. // РНИУП «Институт радиологии». Минск, 2006. - Вып. 2. - С. 221-232.

    .Путятин Ю.В., Влияние различных видов известковых удобрений на переход радионуклидов в растениеводческую продукцию /Клебанович Н.В. // Почва - удобрение - плодородие: Материалы межд. науч.-произв. конф. /Белорус. науч.-исслед. ин-т почвоведения и агрохимии. - Минск, 1999. - С. 200-202.

    .Радиационная безопасность:учебник / Г.А.Чернуха, Н.В. Лазаревич, Т.В.Лаломова. Горки: БГСХА, 2005. 100 с.

    .Радиобиология: Методические указания /Белорусская государственная сельскохозяйственная академия; Сост. Н.В. Лазаревич. Горки, 2007. 20 с.

    .Рерих Л.А., Моисеев И.Т. Влияние основных агрометеорологических факторов на поступление радиоцезия в растения // Агрохимия. - 1989. - №10. - С. 96-99.

    .Ролевич И.В., Пустовит В.Т. Дорожко С.В., Ролевич И.И. «Радиационная Безопасность.Курс лекций» Минск «Дикта», 2010

    .Руководство по ведению агропромышленного производства в условиях радиоактивного загрязнения земель Республики Беларусь на 1997-2000 гг. /Под ред. И.М. Богдевича. - Минск, 1997.- 76 с.

    .Сельскохозяйственная радиоэкология/Под ред. Алексахина Р.М. и Корнеева Н.А. - М.: Экология, 1992. -400 с.

    .Смеян Н.И. Оценка плодородия почв Белоруссии. -Мн., 1989. -359с.

    .Холин Ю.В. Гумусовые кислоты как главные природные комплексообразующие вещества: науч. Журнал «Наука и просвещение» 2001 №4 - 27 с

    .Шмигельская И.Д., Агеец В.Ю. Накопление радионуклидов растениями в зависимости от направленности процессов почвообразования и степени гидроморфизма// Почвы, их эволюция, охрана и повышение производительной способности в современных социально-экономических условиях: Материалы I съезда Белорус.общества почвоведов. / Акад. аграр. наук. Белорус. науч.-исслед. ин-т почво-ведения и агрохимии. - Минск; Гомель, 1995. - С. 272.

    .Экологические аспекты применения удобрений продлённого срока действия с добавками биологически активных веществ в Республике Беларусь / И.М. Богдевич, Г.В. Пироговская, И.А. Богомаз, Г.В. Наумова // Коллоидная химия в решении проблем окружающей среды: Тез.докл. международ. конф. Санкт - Петербург, 1994- С. 127.


    Репетиторство

    Нужна помощь по изучению какой-либы темы?

    Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
    Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

    дипломная работа

    1 Литературный обзор

    1.1 Свойства радионуклида Стронций-90

    Стронций 90 Sr - серебристый кальциеподобный металл, покрытый оксидной оболочкой, плохо вступает в реакцию, включаясь в метаболизм экосистемы по мере формирования сложных Са - Fe - Al - Sr - комплексов. Естественное содержание стабильного изотопа в почве, костных тканях, среде достигает 3,7 х 10 -2 %, в морской воде, мышечных тканях 7,6 х 10 -4 %. Биологические функции не выявлены; не токсичен, может замещать кальций. Радиоактивный изотоп в естественной среде отсутствует .

    Стромнций -- элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций (CAS-номер: 7440-24-6) -- мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.

    Новый элемент обнаружили в минерале стронцианите, найденном в 1764 году в свинцовом руднике близ шотландской деревни Строншиан, давшей впоследствии название новому элементу. Присутствие в этом минерале оксида нового металла было установлено почти через 30 лет Уильямом Крюйкшенком и Адером Кроуфордом. Выделен в чистом виде сэром Хемфри Дэви в 1808 году .

    Стронций содержится в морской воде (0,1 мг/л), в почвах (0,035 масс%).

    В природе стронций встречается в виде смеси 4 стабильных изотопов 84 Sr (0,56 %), 86 Sr (9,86 %), 87 Sr (7,02 %), 88 Sr (82,56 %)..

    Существуют 3 способа получения металлического стронция:

    Термическое разложение некоторых соединений

    Электролиз

    Восстановление оксида или хлорида

    Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием. Далее полученный стронций очищается возгонкой.

    Электролитическое получение стронция электролизом расплава смеси SrCl 2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.

    При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к легкому воспламенению.

    Стронций -- мягкий серебристо-белый металл, обладает ковкостью и пластичностью, легко режется ножом.

    Полиморфен -- известны три его модификации. До 215 о С устойчива кубическая гранецентрированная модификация (б-Sr), между 215 и 605 о С -- гексагональная (в-Sr), выше 605 о С -- кубическая объемно-центрированная модификация (г-Sr).

    Температура плавления -- 768 о С, Температура кипения -- 1390 о С.

    Стронций в своих соединениях всегда проявляет валентность +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними.

    В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен?2,89 В. Энергично реагирует с водой, образуя гидроксид: Sr + 2H 2 O = Sr(OH) 2 + H 2 ^ .

    Взаимодействует с кислотами, вытесняет тяжёлые металлы из их солей. С концентрированными кислотами (H 2 SO 4 , HNO 3) реагирует слабо.

    Металлический стронций быстро окисляется на воздухе, образуя желтоватую плёнку, в которой помимо оксида SrO всегда присутствуют пероксид SrO 2 и нитрид Sr 3 N 2 . При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.

    Энергично реагирует с неметаллами -- серой, фосфором, галогенами. Взаимодействует с водородом (выше 200 о С), азотом (выше 400 о С). Практически не реагирует с щелочами.

    При высоких температурах реагирует с CO 2 , образуя карбид:

    5Sr + 2CO 2 = SrC 2 + 4SrO (1)

    Легко растворимы соли стронция с анионами Cl - , I - , NO 3 - . Соли с анионами F - , SO 4 2- , CO 3 2- , PO 4 3- мало растворимы.

    Основные области применения стронция и его химических соединений -- это радиоэлектронная промышленность, пиротехника, металлургия, пищевая промышленность.

    Стронций применяется для легирования меди и некоторых ее сплавов, для введения в аккумуляторные свинцовые сплавы, для обессеривания чугуна, меди и сталей.

    Стронций чистотой 99,99--99,999 % применяется для восстановления урана .

    Магнитотвёрдые ферриты стронция широко употребляются в качестве материалов для производства постоянных магнитов.

    В пиротехнике применяются карбонат, нитрат, перхлорат стронция для окрашивания пламени в карминово-красный цвет. Сплав магний-стронций обладает сильнейшими пирофорными свойствами и находит применение в пиротехнике для зажигательных и сигнальных составов.

    Радиоактивный 90 Sr (период полураспада 28,9 лет) применяется в производстве радиоизотопных источников тока в виде титанита стронция (плотность 4,8 г/смі, а энерговыделение около 0,54 Вт/смі).

    Уранат стронция играет важную роль при получении водорода (стронциево-уранатный цикл, Лос-Аламос, США) термохимическим способом (атомно-водородная энергетика), и в частности разрабатываются способы непосредственного деления ядер урана в составе ураната стронция для получения тепла при разложении воды на водород и кислород.

    Оксид стронция применяется в качестве компонента сверхпроводящих керамик.

    Фторид стронция используется в качестве компонента твердотельных фторионных аккумуляторных батарей с громадной энергоемкостью и энергоплотностью.

    Сплавы стронция с оловом и свинцом применяются для отливки токоотводов аккумуляторных батарей. Сплавы стронций-кадмий для анодов гальванических элементов.

    Радиационные характеристики приведены в таблице 1 .

    Таблица 1- Радиационные характеристики стронция 90

    В случаях попадания изотопа в окружающую среду поступление стронция в организм зависит от степени и характера включенности метаболита в почвенные органические структуры, продукты питания и колеблется от 5 до 30%, при большем проникновении в детский организм. Независимо от пути поступления излучатель накапливается в скелете (в мягких тканях содержится не более 1%). Выводится из организма крайне плохо, что ведет к постоянному накоплению дозы при хроническом поступлении стронция в организм. В отличие от естественных в-активных аналогов (урана, тория и др.) стронций является эффективным в-излучателем, что меняет спектр радиационного воздействия, в том числе и на гонады, эндокринные железы, красный костный мозг и головной мозг. Накапливаемые дозы (фон) колеблется в пределах (до 0,2 х 10 -6 мкКи/г в костях при дозах порядка 4.5 х 10 -2 мЗв/год) .

    Не следует путать действие на организм человека природного (нерадиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция. Изотоп стронция 90 Sr является радиоактивным с периодом полураспада 28.9 лет. 90 Sr претерпевает в-распад, переходя в радиоактивный 90 Y (период полураспада 64 ч.) Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет. 90 Sr образуется при ядерных взрывах и выбросах с АЭС.

    По химическим реакциям радиоактивный и нерадиоактивные изотопы стронция практически не отличаются. Стронций природный -- составная часть микроорганизмов, растений и животных. Независимо от пути и ритма поступления в организм растворимые соединения стронция накапливаются в скелете. В мягких тканях задерживается менее 1 %. Путь поступления влияет на величину отложения стронция в скелете .

    На поведение стронция в организме оказывает влияние вид, пол, возраст, а также беременность, и другие факторы. Например, в скелете мужчин отложения выше, чем в скелете женщин. Стронций является аналогом кальция. Стронций с большой скоростью накапливается в организме детей до четырехлетнего возраста, когда идет активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечнососудистой системы. Пути попадания:

    Вода (предельно допустимая концентрация стронция в воде в РФ -- 8 мг/л, а в США -- 4 мг/л)

    Пища (томаты, свёкла, укроп, петрушка, редька, редис, лук, капуста, ячмень, рожь, пшеница)

    Интратрахеальное поступление

    Через кожу (накожное)

    Ингаляционное (через воздух)

    Из растений или через животных стронций-90 может непосредственно перейти в организм человека.

    Люди, работа которых связана со стронцием (в медицине радиоактивный стронций используют в качестве аппликаторов при лечении кожных и глазных болезней. Основные области применения природного стронция -- это радиоэлектронная промышленность, пиротехника, металлургия, металлотермия, пищевая промышленность, пр-во магнитных материалов, радиоактивного -- пр-во атомных электрических батарей. атомно-водородная энергетика, радиоизотопные термоэлектрические генераторы и др.) .

    Влияние нерадиоактивного стронция проявляется крайне редко и только при воздействии других факторов (дефицит кальция и витамина Д, неполноценное питание, нарушения соотношения микроэлементов таких как барий, молибден, селен и др.). Тогда он может вызывать у детей «стронциевый рахит» и «уровскую болезнь» -- поражение и деформация суставов, задержка роста и другие нарушения. Напротив, радиоактивный стронций практически всегда негативно воздействует на организм человека:

    Откладывается в скелете (костях), поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни, опухолей кроветворной ткани и костей.

    Вызывает лейкемию и злокачественные опухоли (рак) костей, а также поражение печени и мозга

    Изотоп стронция 90 Sr является радиоактивным с периодом полураспада 28,79 лет. 90 Sr претерпевает в-распад, переходя в радиоактивный иттрий 90 Y (период полураспада 64 часа). 90 Sr образуется при ядерных взрывах и выбросах с АЭС .

    Стронций является аналогом кальция и способен прочно откладываться в костях. Длительное радиационное воздействие 90 Sr и 90 Y поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни, опухолей кроветворной ткани и костей.

    Попадая в почву, стронций-90 вместе с растворимыми соединениями кальция поступает в растения, из которых может непосредственно или через животных поступить в организм человека. Так создается цепь передачи радиоактивного стронция: почва - растения - животные - человек. Проникая в организм человека, стронций накапливается преимущественно в костях и подвергает, таким образом, организм длительному внутреннему радиоактивному воздействию. Результатом этого воздействия, как показывают исследования ученых, проведенные в опытах на животных (собаках, крысах и др.), является тяжелое заболевание организма. На первый план выступают повреждения кроветворных органов и развитие опухолей в костях. В обычных условиях «поставщиком» радиоактивного стронция являются экспериментальные взрывы ядерного и термоядерного оружия. Исследованиями американских ученых установлено, что даже малое лучевое воздействие, безусловно, вредно для здорового человека. Если же учесть, что и при крайне малых дозах этого воздействия наступают резкие изменения в тех клетках организма, от которых зависит воспроизводство потомства, то вполне понятно, что ядерные взрывы несут смертельную опасность еще... не родившимся! Свое название стронций получил от минерала - стронцианита (углекислой соли стронция), найденного в 1787 г. в Шотландии близ деревушки Стронциан. Английский исследователь А. Крофорд, изучая стронцианит, высказал предположение о наличии в нем новой еще не известной «земли». Индивидуальную особенность стронцианита установил также и Клапрот. Английский химик Т. Хоп в 1792 г. доказал наличие в стронцианите нового металла, выделенного в свободном виде в 1808 г. Г. Дэви .

    Однако, независимо от западных ученых, русский химик Т.Е. Ловиц в 1792 г., исследуя минерал барит, пришел к заключению, что в нем, помимо окиси бария, в качестве примеси находится и «стронцианова земля». Чрезвычайно осторожный в своих заключениях, Ловиц не решился опубликовать их до окончания вторичной проверки опытов, требовавших накопления большого количества «стронциановой земли». Поэтому исследования Ловица «О стронциановой земле в тяжелом шпате», хотя и были опубликованы после исследований Клапрота, фактически же проведены раньше его. Они свидетельствуют об открытии стронция в новом минерале - сернокислом стронции, называемом теперь целестином. Из этого минерала простейшие морские организмы - радиолярии, акантарии - строят иглы своего скелета. Из иголочек отмирающих беспозвоночных образовались скопления и самого целестина

    1.2 Накопление радионуклида стронция - 90 в почвах и растениях

    Продовольственное и техническое качество продукции - зерна, клубней, масличных семян, корнеплодов, получаемой от облучённых растений, сколько- либо существенно не ухудшается даже при снижении урожая до 30-40 %.

    Содержание масла в семенах подсолнечника и лотса зависит от дозы облучения, получаемой растениями, и фазы их развития в момент начала облучения. Аналогичная зависимость наблюдается и по выходу сахара в урожае корнеплодов облучённых растений свеклы. Содержание витамина С в плодах томатов, собранных с облучённых растений, зависит от фазы развития растений в период начала облучения и дозы облучения. Например, при облучении растении во время массового цветения и начала плодоношения дозами 3 - 15 кР содержание в плодах томатов витамина С повышалось по сравнению с контролем на 3 - 25 %. Облучение растений в период массового цветения и начало плодоношения дозой до 10 кР затормаживает развитие семян у формирующихся плодов, которые обычно становятся бессемянными .

    Аналогичная закономерность получена в опытах с картофелем. При облучении растений в период клубнеобразования урожай клубней при облучении дозами 7 - 10 кР практически не снижается. Если растения облучаются в более раннюю фазу развития, урожай клубней уменьшается в среднем на 30 - 50 %. Кроме того, клубни получаются не жизнеспособными из-за стерильности глазков.

    Облучение вегетирующих растений не только приводит к уменьшению их продуктивности, но и снижает посевные качества формирующихся семян. Так при облучении вегетирующих растений не только приводит к уменьшению их продуктивности, но и снижает посевные качества формирующихся семян. Так при облучении зерновых культур в наиболее чувствительные фазы развития (кущение, выход в трубку) сильно снижается урожай, однако всхожесть получаемых семян существенно снижается, что даёт возможность не использовать их для посева. Если же растения облучают в начале молочной спелости (когда происходит формирование звена) даже в относительно высоких дозах, урожай зерна сохраняется практически полностью, однако такие семена не могут быть использованы для посева ввиду предельно низкой всхожести.

    Таким образом радиоактивные изотопы не вызывают заметных повреждений растительных организмов, однако в урожае сельскохозяйственных культур они накапливаются в значительных количествах.

    Значительная часть радионуклидов находится в почве, как на поверхности, так и в нижних слоях, при этом их миграция во многом зависит от типа почвы, её гранулометрического состава, водно-физических и агрохимических свойств.

    Основными радионуклидами, определяющими характер загрязнения, в нашей области является цезий - 137 и стронция - 90, которые по разному сортируются почвой. Основной механизм закрепления стронция в почве - ионный обмен, цезия - 137 обменной формой либо по типу ионообменной сорбции на внутренней поверхности частиц почвы .

    Поглощение почвой стронция - 90 меньше цезия - 137, а следовательно, он является более подвижным радионуклидом.

    В момент выброса цезия - 137 в окружающие среду, радионуклид изначально находится в хорошо растворимом состоянии (парогазовая фаза, мелкодисперсные частицы и т.д.)

    В этих случаях поступления в почву цезий - 137 легкодоступен для усвоения растениями. В дальнейшем радионуклид может включаться в различные реакции в почве, и подвижность его снижается, увеличивается прочность закрепления, радионуклид «стареет», а такое «старение» представляет комплекс почвенных кристаллохимических реакций с возможным вхождением радионуклида в кристаллическую структуру вторичных глинистых минералов.

    Механизм закрепления радиоактивных изотопов в почве, их сорбция имеет большое значение, так как сорбция определяет миграционные качества радиоизотопов, интенсивность поглощения их почвами, а, следовательно, и способность проникать их в корни растений. Сорбция радиоизотопов зависит от многих факторов и одним из основных является механический и минералогический состав почвы тяжёлыми по гранулометрическому составу почвами поглощённые радионуклиды, особенно цезий - 137, закрепляются сильнее, чем лёгкими и с уменьшением размера механических фракций почвы прочность закрепления ими стронция - 90 и цезия - 137 повышается. Наиболее прочно закрепляются радионуклиды илистой фракцией почвы.

    Большему удержанию радиоизотопов в почве способствует наличие в ней химических элементов, близких по химическим свойствам к этим изотопам. Так, кальций - химический элемент, близкий по своим свойствам стронцию - 90 и внесение извести, особенно на почвы с высокой кислотностью, ведёт к увеличению поглотительной способности стронция - 90 и к уменьшению его миграции. Калий схож по своим химическим свойствам с цезием - 137. Калий, как неизотопный аналог цезия находится в почве в макроколичествах, в то время как цезий - в ультра микроконцентрациях. Вследствие этого в почвенном растворе происходит сильное разбавление микроколичеств цезия-137 ионами калия, и при поглощении их корневыми системами растений отмечается конкуренция за место сорбции на поверхности корней. Поэтому при поступлении этих элементов из почвы в растениях наблюдается антагонизм ионов цезия и калия .

    Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количество осадков).

    Установлено, что стронций-90, попавший на поверхность почвы, вымывается дождём в самые нижние слои. Следует заметить, что миграция радионуклидов в почвах протекает медленно и их основная часть находится в слое 0 - 5 см.

    Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической особенности растений. На кислых почвах радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых. Снижение кислотности почвы, как правило, способствует уменьшению размеров перехода радионуклидов в растения. Так, в зависимости от свойства почвы содержание стронция - 90 и цезия - 137 в растениях может изменяться в среднем в 10 - 15 раз.

    А межвидовые различия сельскохозяйственных культур в накопление этих радионуклидов наблюдается зернобобовыми культурами. Например, стронций - 90 и цезий - 137, в 2 - 6 раз поглощается интенсивнее зернобобовыми культурами, чем злаковыми .

    Поступление стронция-90 и цезия-137 в травостой на лугах и пастбищах определяется характером распределения в почвенном профиле.

    В загрязнённой зоне, луга Рязанской области загрязнены на площади 73491 га, в том числе с плотностью загрязнения 1,5 Ки/км 2 - 67886 (36 % от общей площади), с плотностью загрязнения 5,15 Ки/км 2 - 5605 га (3%).

    На целинных участка, естественных лугах, цезий находится в слое 0-5 см, за прошедшие годы после аварии не отмечена значительная вертикальная миграция его по профилю почвы. На перепаханных землях цезий - 137 находится в пахотном слое.

    Пойменная растительность в большей степени накапливает цезий - 137, чем суходольная. Так при загрязнении поймы 2,4 Ки/км 2 в траве было обнаружено Ки/кг сухой массы, а на суходольной при загрязнении 3,8 Ки/км 2 в траве содержалось Ки /кг .

    Накопление радионуклидов травянистыми растениями зависит от особенностей строения дернины. На злаковом лугу с мощной плотной дерниной содержание цезия - 137 в фитомассе в 3 - 4 раза выше, чем на разнотравном с рыхлой маломощной дерниной.

    Культуры с низким содержанием калия меньше накапливают цезия. Злаковые травы накапливают меньше цезия по сравнению с бобовыми. Растения сравнительно устойчивы к радиоактивному воздействию, но они могут накапливать такое количество радионуклидов, что становятся не пригодными к употреблению в пищу человека и на корм скоту.

    Поступление цезия - 137 в растения зависит от типа почвы. По степени уменьшения накопления цезия в урожае растения почвы можно расположить в такой последовательности: дерново-подзолистые супесчаные, дерново-подзолистые суглинистые, серая лесная, чернозёмы и т.д. Накопление радионуклидов в урожае зависит не только от типа почвы, но и от биологической особенности растений.

    Отмечается, что кальциелюбивые растения обычно поглощают больше стронция - 90,чем растения бедные кальцием. Больше всего накапливают стронций - 90 бобовые культуры, меньше корнеплоды и клубнеплоды, и ещё меньше злаковые .

    Накопление радионуклидов в растении зависит от содержания в почве элементов питания. Так установлено, что минеральное удобрение, внесённое в дозах N 90, Р 90, увеличивает концентрацию цезия - 137 в овощных культурах в 3 - 4 раза, а аналогичные внесения калия в 2 - 3 раза снижает его содержание. Положительный эффект на уменьшение поступления стронция - 90 в урожай зернобобовых культур оказывает содержание кальций содержащих веществ. Так, например, внесение в выщелочный чернозём извести в дозах, эквивалентных гидролитической кислотности, уменьшает поступление стронция-90 в зерновые культуры в 1,5 - 3,5 раза.

    Наибольший эффект на снижение поступления стронция - 90 в урожай растений достигает внесением полного минерального удобрения на фоне доломита. На эффективность накопления радионуклидов в урожае растений оказывают влияние органические удобрения и метеорологические условия, а также и время их пребывание в почве. Установлено, что накопление стронция - 90, цезия - 137 через пять лет после их попадания в почву снижается в 3 - 4 раза .

    Таким образом, миграция радионуклидов во многом зависит от типа почвы, её механического состава, водно-физических и агрохимических свойств. Так на сорбцию радиоизотопов влияют многие факторы, и одним из основных являются механический и минералогический состав почвы. Тяжёлыми по механическому составу почвами поглощённые радионуклиды, особенно цезий-137, закрепляются сильнее, чем лёгкими. Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количества осадков).

    Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической способности растений.

    Радиоактивные вещества, попадающие в атмосферу, в конечном счете, концентрируются в почве. Через несколько лет после радиоактивных выпадений на земную поверхность поступления радионуклидов в растения из почвы становится основным путём попадания их в пищу человека и корм животным. При аварийных ситуациях, как показала авария на Чернобыльской АЭС, уже на второй год после выпадений основной путь попадания радиоактивных веществ в пищевые цепи - поступление радионуклидов из почвы в растения.

    Радиоактивные вещества, попадающие в почву, могут из неё частично вымываться и попадать в грунтовые воды. Однако почва довольно прочно удерживает попадающие в неё радиоактивные вещества. Поглощение радионуклидов обуславливает очень длительное (в течение десятилетий) их нахождение в почвенном покрове и непрекращающееся поступления в сельскохозяйственную продукцию. Почва как основной компонент агроценоза оказывает определяющее влияние на интенсивность включения радиоактивных веществ в кормовые и пищевые цепи.

    Поглощение почвами радионуклидов препятствует их передвижению по профилю почв, проникновению в грунтовые воды и в конечном счёте определят их аккумуляцию в верхних почвенных горизонтах.

    Механизм усвоения радионуклидов корнями растений сходен с поглощением основных питательных веществ - макро и микроэлементов. Определённое сходство наблюдается в поглощении растениями и передвижения по ним стронция - 90 и цезия - 137 и их химических аналогов - кальция и калия, поэтому содержание данных радионуклидов в биологических объектах иногда выражают по отношению к их химическим аналогам, в так называемых стронциевых и цезиевых единицах.

    Радионуклиды Ru-106, Ce-144, Co-60 концентрируются преимущественно в корневой системе и в незначительных количествах передвигаются в назёмные органы растений. В отличие от них стронций-90 и цезий-137 в относительно больших количествах накапливаются в наземной части растений .

    Радионуклиды, поступившие в подземную часть растений, в основном концентрируются в соломе (листья и стебли), меньше - в мягкие (колосья, метёлки без зерна. Некоторые исключения из этой из этой закономерности составляет цезий, относительное содержание которого в семенах может достигать 10 % и выше общего количества его в надземной части. Цезий интенсивно передвигается по растению и относительно в больших количествах накапливается в молодых органах, чем очевидно вызвана повышенная концентрация его в зерне .

    В общем, накопление радионуклидов и их содержание на единицу массы сухого вещества в процессе роста растений наблюдается такая же закономерность, как и для биологически важных элементов: с возрастом растений в их надземных органах увеличивается абсолютное количество радионуклидов и снижается содержание на единицу массы сухого вещества. По мере увеличения урожая, как правило, уменьшается содержание радионуклидов на единицу массы.

    Из кислых почв радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых, нейтральных и слабощелочных. В кислых почвах повышается подвижность стронция - 90 и цезия - 137 снижается прочность их растениями. Внесение карбонатов кальция и калия или натрия в кислую дерново-подзолистую почву в количествах, эквивалентных гидролической кислотности, снижает размеры накопления долгоживущих радионуклидов стронция и цезия в урожае.

    Существует тесная обратная зависимость накопления стронция-90 в растениях от содержания в почве обменного кальция (поступление стронция уменьшается с увеличением содержания обменного кальция в почве).

    Следовательно, зависимость поступления стронция-90 и цезия-137 из почвы в растения довольно сложная, и не всегда её можно установить по какому-либо одному из свойств, в разных почвах необходимо учитывать комплекс показателей.

    Пути миграции радионуклидов в организм человека различны. Значительная их доля поступает в организм человека по пищевой цепи: почва - растения - сельскохозяйственные животные - продукция животноводства - человек. В принципе радионуклиды могут поступать в организм животных через органы дыхания, желудочно-кишечный тракт и поверхность кожи. Если в период

    радиоактивных выпадений крупных рогатый скот находится на пастбище, то поступление радионуклидов может составить (в относительных единицах): через пищеварительный канал 1000, органы дыхания 1, кожу 0,0001. Следовательно, в условиях радиоактивных выпадений основное внимание должно быть обращено на максимально возможное снижение поступления радионуклидов в организм сельскохозяйственных животных через желудочно-кишечный тракт.

    Так как радионуклиды, поступая в организм животных и человека, могут накапливаться и, оказывая неблагоприятное воздействие на здоровье и генофонд человека необходимо проводить мероприятия, снижающие поступление радионуклидов в сельскохозяйственные растения, снижение накопления радиоактивных веществ в организмах сельскохозяйственных животных.

    1.3 Особенности миграции стронция-90 в окружающую среду

    Радионуклид 90 Sr характеризуется большей подвижностью в почвах по сравнению с 137 Сs. Поглощение 90 Sr в почвах в основном обусловлено ионным обменом. Большая часть задерживается в верхних горизонтах. Скорость миграции его по почвенному профилю зависит от физико-химических и минералогических особенностей почвы.

    При наличии в почвенном профиле перегнойного горизонта, расположенного под слоем подстилки или дернины, 90 Sr концентрируется в этом горизонте. В таких почвах, как дерново-подзолистая песчаная, перегнойно-торфянисто-глеевая суглинистая на песке, черноземно-луговая оподзоленная, выщелоченный чернозем, наблюдается некоторое увеличение содержания радионуклида в верхней части иллювиального горизонта.

    В засоленных почвах появляется второй максимум, что связано с меньшей растворимостью сульфата стронция и его подвижностью. В верхнем горизонте он задерживается в солевой корке. Концентрирование в перегнойном горизонте объясняется высоким содержанием гумуса, большой величиной емкости поглощения катионов и образованием малоподвижных соединений с органическим веществом почв.

    В модельных экспериментах при внесении 90 Sr в разные почвы, помещенные в вегетационные сосуды, было установлено, что скорость его миграции в условиях опыта возрастает с увеличением содержания обменного кальция. Повышение миграционной способности 90 Sr в почвенном профиле при увеличении содержания кальция наблюдалось и в полевых условиях. Миграция стронция-90 возрастает также с увеличением кислотности и содержания органического вещества .

    В миграции 90Sr большую роль играет лесная растительность. В период интенсивных радиоактивных выпадений деревья выполняют роль экрана, на котором осаждались радиоактивные аэрозоли. Задержанные поверхностью листьев и хвои радионуклиды поступают на поверхность почвы с опавшими листьями и хвоей. Особенности лесной подстилки оказывают существенное влияние на содержание и распределение стронция-90. В лиственных подстилках содержание 90 Sr постепенно падает от верхнего слоя к нижнему, в хвойных происходит значительное накопление радионуклида в нижней гумусированной части подстилки.

    Таблица 2 - Образование стронция 90

    При делении 235 U и 239 Pu тепловыми нейтронами в реакторе 90 Sr образуется с выходами 5,77 и 2,25 %. Значительные количества 90 Sr (7,4 · 10 17 Бк) были выброшены в атмосферу при испытаниях ядерного оружия в 1945-1980 гг. .

    При выбросах большая часть радионуклидов попадает в стратосферу (слой атмосферы, лежащий на высоте 10-50 км) и остается там в течение многих месяцев, медленно опускаясь и рассеиваясь по всей поверхности земного шара. Период полураспада 89 Sr составляет 50,5 сут., и он, попав в стратосферу при ядерных взрывах, в основном там и распадается, не представляя такой большой радиационной опасности для землян, как 90 Sr и 137 Сs, которые, выпадая, загрязняют поверхность Земли на многие годы.

    С другой стороны, при авариях на ядерных реакторах, таких, как на Чернобыльской АЭС, когда накопленная равновесная активность 89 Sr в 10 раз превышает активность 90 Sr, который из-за своего большого периода полураспада не успевает накопиться за 2-3 года работы реактора, ситуация меняется. Сразу после аварии на Чернобыльской АЭС активность выброшенных короткоживущих радионуклидов 89 Sr была во много раз выше, чем 90 Sr или 137 Cs .

    После испытаний ядерного оружия радиоактивные осадки состоят в основном из водорастворимых и способных к ионному обмену форм 90 Sr, в то же время после аварии на Чернобыльской АЭС 90 Sr нередко осаждался в формах устойчивых соединений.

    При работе АЭС 90 Sr, как и 137 Cs, выброшенный в окружающую среду, в конечном итоге накапливается или в верхних слоях почвы в наземных системах, или в донных осадках природных водных резервуаров. При этом стронций мигрирует на очень малые расстояния, например на 1 см за несколько лет.

    Проведенные в конце 1980-х гг. исследования невспаханных участков в Кыштыме, загрязненных в 1957 г. 90 Sr и другими радионуклидами при взрыве отходов, показали, что 90 Sr за этот период времени достиг глубины 15 см, и это означает, что скорость его миграции составила 0,5 см/г. Из почвы через корневую систему 90 Sr выносится в растения и входит в состав зерна, бобов, моркови и других продуктов. Этот вынос определяется коэффициентом переноса (КП), который зависит от вида почв и рН среды.

    С целью уменьшения выноса 90 Sr из почвы в растения применяют вспашку почвы и внесение удобрений .

    Наиболее эффективна глубокая вспашка, приводящая к погребению активности ниже того слоя, в котором находятся корни растений. В районах Южного Урала, загрязненных 90 Sr после аварии в Кыштыме, были получены хорошие результаты при вспашке на глубину 50 см. Из данных таблицы следует, что действенной мерой, наряду с внесением с удобрениями N, P и К, является известкование почвы.

    Таблица 3 - Некоторые характерные значения КП 90 Sr из почвы в растение (Бк · кг- 1 сухой культуры/Бк · кг- 1 сухой почвы) (Пояснение. КП приводится для верхнего слоя глубиной 20 см, а значения для трав даны для верхнего слоя почвы глубиной 10 см)

    Таблица 4 - Влияние сельскохозяйственных контрмер на поглощение 90 Sr луговыми растениями в окрестностях Гомеля (Белоруссия)

    Радиоактивный стронций поступает в организм человека через ЖКТ, легкие и кожу. Растворимые соединения стронция хорошо всасываются из ЖКТ, величина резорбции -- 0,1-0,6, и резорбция составляет менее 0,01 для плохо растворимых соединений. Стронций быстро всасывается из легких. Через 5 мин после интратрахеального введения в количестве 1,48 · 10 4 Бк/г в легких остается 33,3 % введенного количества, через сутки -- 0,39 %. При нанесении изотопов стронция на кожу в количестве 2,4 · 10 5 Бк/см 2 фиксация активности происходит сразу же после загрязнения кожной поверхности .

    При резорбции стронция из ЖКТ важное значение имеют диета, химическое соединение радионуклида и физиологические факторы (возраст, лактация и беременность, состояние минерального обмена, нервной и эндокринной систем). Величина всасывания радионуклида из ЖКТ уменьшается с увеличением возраста, с повышением содержания кальция и фосфора в диете, при введении высоких доз тироксина. Прием альгината натрия за 20 мин до введения стронция понижает его содержание в крови в 8-10 раз, а лактоза, лизин и аргинин, наоборот, удваивают величину всасывания стронция из ЖКТ.

    Независимо от пути и периодичности поступления в организм растворимых соединений радиоактивного стронция, он избирательно накапливается в скелете, а в мягких тканях задерживается менее 1 %. После внутривенного введения радиоактивного стронция в организм человека через 100 суток в нем останется 20 % от введенного количества, в то время как у обезьян -- 47 %, а у кроликов -- 7,5 %. Доля отложений стронция в скелете зависит от пути его поступления. При интратрахеальном поступлении депонируется 76 %, ингаляционном -- 31,6 %, внутрибрюшном -- 81,2 % и накожном -- всего 7 ? .

    В экспериментах на животных установлено, что при внутримышечном или пероральном введении радиоактивного стронция самкам в разные сроки беременности большая часть (50-70) его откладывалась в плодах в последние дни беременности. Распределение радиоактивного стронция в разных частях одной и той же кости и в разных костях неравномерное. Стронций откладывается в участках костей, обладающих наибольшей зоной роста, где происходит усиленное образование кости.

    Учитывая функцию удержания и выведения и 90 Sr через почки, Абрамов и Голутвина рассчитали дозу от этих радионуклидов на поверхности кости при однократном и хроническом введении радионуклидов в количестве 37 кБк/сут. Из таблицы видно, что при однократном введении радионуклидов стронция суммарная доза от 89 Sr по прошествии нескольких периодов полураспада этого нуклида практически не возрастает, а доза от 90 Sr, обусловленная суммой малых констант распада и биологического выведения, непрерывно увеличивается.

    Таблица 5- Оцененная доза на поверхности кости при однократном и хроническом введении в организм радионуклидов 89 Sr и 90 Sr в количестве 37 кБк/сут.

    Время после введения, сут.

    Доза от 89 Sr, мЗв

    Доза от 90 Sr, мЗв

    Однократное введение

    Хроническое введение

    Предложена возрастная модель отложения стронция и других щелочноземельных элементов в кости человека во всем возрастном диапазоне, начиная с рождения. Показано, что ожидаемые эквивалентные дозы для костного мозга при поступлении 90 Sr в первые месяцы после рождения на порядок выше, чем при поступлении в организм взрослого человека.

    Выведение стронция из организма человека и животных происходит как с калом, так и с мочой. При пероральном поступлении большая часть стронция выделяется с калом. За 8 суток суммарное выделение 89 Sr составляет 77,9 %, из них 5 % с мочой.

    Установлено несколько периодов полувыведения 90 Sr из организма. Короткий период полувыведения (2,5-8,5 сут.) характеризует выведение стронция из мягких тканей, длинный период (90-154 сут.) -- преимущественно из костей. При длительном пероральном или парэнтеральном введении в организм 90 Sr период полувыведения из скелета значительно увеличивается, а начальный короткий период полувыведения отсутствует или очень мал. У человека и животных после однократного перорального поступления радионуклидов стронция с молоком во время лактации выделяется от 0,04 до 4 % на 1 л молока от введенного радионуклида; при хроническом поступлении 90 Sr в организм с молоком выделяется 0,05-6,3 % на 1 л по отношению к дневной норме .

    Введение остроэффективных количеств 90 Sr вызывает развитие типичной острой лучевой патологии. Возникают выраженные изменения со стороны периферической крови: лейкопения, лимфопения, нейтропения, ретикулопения. Наблюдаются изменения красной крови, ускорение реакции оседания эритроцитов, замедление свертывания крови и увеличение объема плазмы.

    У собак, получавших с пищей ежедневно 0,74 кБк/кг 90 Sr в течение 3-3,5 лет, выявлены нарушения в углеводном обмене, изменения секреторной и экскреторной функций печени и почек. Меньшие количества 90 Sr (0,675 кБк/кг) к существенным функциональным изменениям в их организме не привели, однако за 9-13 лет из подопытной группы погибло 80 % собак, а из контрольной -- 11 % .

    Длительное введение собакам 90 Sr с пищей (0,74-0,074 кБк/кг) и накопление суммарной поглощенной дозы в скелете до 3,6-9,0 Гр приводит к учащению возникновения у них доброкачественных и злокачественных опухолей мягких тканей (в 3-5 раз чаще по сравнению с контрольными животными). Хроническое введение этим животным 90 Sr (по 0,74 кБк/кг в сутки в течение 3 лет), создающее мощность тканевой дозы в скелете до 1,5 Гр/г., может вызвать развитие лейкозов и остеосарком. При хроническом введении в 10 раз меньших количеств этого радионуклида (поглощенная доза в скелете до 0,5 Гр/г.) наблюдаются нарушения в развитии потомства и понижение его жизнеспособности .

    Радиоактивность 90 Sr определяют по дочернему 90 Y, который осаждается в виде оксалатов. Из продуктов питания 90 Y выделяют экстракцией моноизооктиловым эфиром метилфосфоновой кислоты. Из золы костной ткани 90 Y экстрагируют трибутилфосфатом. Активность измеряют на низкофонной установке. Определение 89 Sr в пищевых продуктах, растительности и костной ткани основано на осаждении стронция дымящей азотной кислотой с последующим измерением активности. При попадании радиоактивных изотопов стронция на открытые участки кожи дезактивацию проводят 5%-м раствором пентацина, 5%-м раствором Na 2 (ЭДТА) или 2%-м раствором соляной кислоты, а также моющими порошками. При попадании радионуклидов стронция через ЖКТ принимают внутрь препарат «Адсорбар» или сернокислый барий (25 г с 200 мл воды), альгинат натрия или кальция (15 г с 200 мл воды) или препарат «Полисурьмин» (4 г с 200 мл воды). Применяют рвотные средства и проводят обильное промывание желудка. После очищения желудка осуществляют повторное введение адсорбентов с солевыми слабительными. В случае поражения пылевыми продуктами проводят обильное промывание носоглотки и полости рта, используют отхаркивающие, а также мочегонные средства.

    В соответствии с НРБ-99 допустимая концентрация 90 Sr в воздухе рабочих помещений примерно в 24 раза ниже, чем 89 Sr, что указывает на его исключительную радиационную опасность. Для населения допустимая концентрация 90 Sr в атмосферном воздухе регламентируется (НРБ-99) величиной, равной 2,7 Бк/м 3 , что находится за пределами чувствительности большинства методов выделения и измерения радиоактивности этого радионуклида.

    Таблица 6- ПГП, e , ДОА в воздухе рабочих помещений в зависимости от химических соединений и ядерно-физических свойств радионуклидов 89 Sr и 90 Sr, МЗУА и МЗА этих изотопов на рабочем месте

    Таблица 7- ДОА в воздухе, e , ПГП с воздухом, водой и пищей радионуклидов 89 Sr и 90 Sr и УВ при его поступлении с водой для населения

    Исследованиями установлено, что 80-90% радионуклидов сосредоточено в активной зоне расположения основной массы корней сельскохозяйственных культур. На необрабатываемых после чернобыльской катастрофы землях практически все радионуклиды находятся в верхней части (до 10-15 см) гумусовых горизонтов, а на пахотных почвах радионуклиды распределены сравнительно равномерно по всей глубине обрабатываемого слоя. Расчеты показывают, что в ближайшей перспективе самоочищение корнеобитаемого слоя загрязненных почв за счет вертикальной миграции радионуклидов будет незначительным .

    Вместе с тем наблюдаются процессы локального вторичного загрязнения почв сельскохозяйственных угодий за счет горизонтальной миграции радионуклидов вследствие ветровой и водной эрозии. Содержание цезия-137 в пахотном горизонте различных элементов рельефа склоновых земель в результате водной эрозии на посевах однолетних культур за девять лет перераспределилось до 1,5-3,0 раз.

    Увеличение плотности загрязнения почв цезием-137 в зоне аккумуляции (нижние части склонов и понижения) по сравнению с зоной смыва составило в среднем от 13% при ежегодном смыве почвы менее 5 т/га до 75% - при смыве 12-20 т/га. На бессменных посевах многолетних трав твердого стока не наблюдалось и достоверных различий в плотности загрязнения почв по элементам склонов не установлено. В результате ветровой эрозии осушенных торфяно-болотных и песчаных почв, используемых под посев однолетних культур, локальные различия в плотности загрязнения пахотного горизонта радиоцезием достигали 1,5-2,0 раз. Это подчеркивает необходимость защиты почв от водной и ветровой эрозии, что обеспечивает также снижение потерь гумусового слоя и уменьшает вероятность загрязнения продукции на локальных участках угодий.


    Введение

    1. Литературный обзор

    1.1 Свойства радионуклида стронций-90

    2. Характеристика Семипалатинского ядерного полигона, находящегося на территории Павлодарской области

    3. Объект и методы исследования

    4. Результаты исследования

    4.1 Радиационные последствия атмосферных ядерных испытаний на территории Семипалатинского ядерного полигона, находящегося на землях Павлодарской области

    4.2 Характеристика атмосферных ядерных взрывов, произведенных на испытательной площадке «Опытное поле»

    Заключение

    Список использованной литературы

    Введение

    Основным реальным источником радиоактивного загрязнения почвенно-растительного комплекса являются глобальные радиоактивные выпадения из атмосферы долгоживущих радионуклидов после ядерных испытаний, а также выбросы техногенных радионуклидов, связанные с работой предприятий ядерного топливного цикла.

    Основным источником поступления радионуклидов в наземные пищевые цепи является почва. В результате выпадений радионуклиды поступают на земную поверхность, аккумулируются в почве, включаются в биогеохимические циклы миграции и становятся новыми компонентами почвы. Почва является наиболее важным инерционным звеном, и от скорости миграции радионуклидов в почве во многом зависят темпы их распространения по всей цепочке. В результате перемещения в почве и последующего корневого поглощения радиоактивные вещества поступают в части растений, представляющие пищевую или кормовую ценность

    Sr-90 является ведущим с точки зрения радиационной опасности нуклидом на территории, подвергшейся радиоактивному загрязнению с периодом полураспада 28,6 года.

    Имеются сведения, что миграционные свойства Sr-90 в почвенно-растительных комплексах существенно отличаются в зависимости от типа почв, механического состава и видовых различий растений. В связи с этим является актуальным вопрос выявления закономерностей миграции радионуклидов Sr-90 в биогеоценозах степной зоны, а также изучение влияния физико-химических свойств почв на поступление Sr-90 в растения

    В настоящее время и в перспективе особо остро встаёт проблема экологической безопасности окружающей среды, экологически безопасного природопользования при возрастающих антропогенных нагрузках.

    Загрязнение системы «почва-растения-вода» различными химическими веществами, а главным образом твердыми, жидкими и газообразными отходами промышленности, продуктами топлива и т.д. приводит к изменению химического состава почв.

    Техногенные выбросы радионуклидов в природную среду в ряде районов земного шара значительно превышают природные нормы.

    До недавнего времени в качестве важнейших загрязняющих веществ рассматривались, главным образом, пыль, угарный и углекислый газы, оксиды серы и азота, углеводороды. Радионуклиды рассматривались в меньшей степени. В настоящее время интерес к загрязнению радиоактивными веществами вырос, в связи с факторами появления острых токсичных эффектов, вызванных загрязнением стронцием и цезием.

    Радионуклиды по цепочке «почва - растение - животное» попадают в организм человека, накапливаются и оказывают не благоприятное воздействие на здоровье. Поэтому одной из задач современности является производство экологически «чистой» продукции.

    Важнейшая проблема сельского хозяйства в условиях загрязнения почвы радиоактивными элементами - максимально возможное снижение поступления этих веществ в растениеводческую продукцию и предотвращение накопление их в организмах сельскохозяйственных животных. Решение этой задачи связано с комплексом мероприятий, которые необходимо проводить в сельском хозяйстве. Основание для проведения данных мероприятий является увеличение заболеваемости и смертности, врожденных уродств и населения, проживающего на загрязнённых территориях.

    Вопрос об изменении ведения сельского хозяйства должен решаться в каждом конкретном случае с учётом всех обстоятельств на основе точной и достоверной информации в зависимости от типа почвы, её механического состава, водно-физических и агрохимических свойств и от степени загрязнённости территории.

    Северная часть территории бывшего Семипалатинского испытательного полигона активно используется для сельскохозяйственной деятельности: выпаса скота, заготовки сена, производства зерновых культур и т.д. Вблизи этой местности проводили испытания боевых радиоактивных веществ, влияние которых на окружающую среду и людей, занимающихся трудовой деятельностью на данном и прилегающем к нему участках мало исследованы.

    Объектом исследования являются почвенно-растительные комплексы степной зоны, подверженные глобальным выпадениям радионуклидов. Изучалась миграция радионуклидов стронция-90 в почвах различных типов и накопление радионуклидов растениями степной зоны

    Цель работы - изучение коэффициента перехода стронция-90 из почвы в растение на территории Семипалатинского полигона, находящегося на землях Павлодарской области

    Проанализировать особенности накопление радионуклида стронция - 90 в почвах и растениях

    Изучить особенности миграции стронция-90 в растения

    Определить коэффициент перехода стронция-90 из почвы в растения

    1 Литературный обзор

    1.1 Свойства радионуклида Стронций-90

    Стронций 90 Sr - серебристый кальциеподобный металл, покрытый оксидной оболочкой, плохо вступает в реакцию, включаясь в метаболизм экосистемы по мере формирования сложных Са - Fe - Al - Sr - комплексов. Естественное содержание стабильного изотопа в почве, костных тканях, среде достигает 3,7 х 10 -2 %, в морской воде, мышечных тканях 7,6 х 10 -4 %. Биологические функции не выявлены; не токсичен, может замещать кальций. Радиоактивный изотоп в естественной среде отсутствует .

    Стромнций -- элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций (CAS-номер: 7440-24-6) -- мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью, на воздухе быстро реагирует с влагой и кислородом, покрываясь жёлтой оксидной плёнкой.

    Новый элемент обнаружили в минерале стронцианите, найденном в 1764 году в свинцовом руднике близ шотландской деревни Строншиан, давшей впоследствии название новому элементу. Присутствие в этом минерале оксида нового металла было установлено почти через 30 лет Уильямом Крюйкшенком и Адером Кроуфордом. Выделен в чистом виде сэром Хемфри Дэви в 1808 году .

    Стронций содержится в морской воде (0,1 мг/л), в почвах (0,035 масс%).

    В природе стронций встречается в виде смеси 4 стабильных изотопов 84 Sr (0,56 %), 86 Sr (9,86 %), 87 Sr (7,02 %), 88 Sr (82,56 %)..

    Существуют 3 способа получения металлического стронция:

    Термическое разложение некоторых соединений

    Электролиз

    Восстановление оксида или хлорида

    Основным промышленным способом получения металлического стронция является термическое восстановление его оксида алюминием. Далее полученный стронций очищается возгонкой.

    Электролитическое получение стронция электролизом расплава смеси SrCl 2 и NaCl не получило широкого распространения из-за малого выхода по току и загрязнения стронция примесями.

    При термическом разложении гидрида или нитрида стронция образуется мелкодисперсный стронций, склонный к легкому воспламенению.

    Стронций -- мягкий серебристо-белый металл, обладает ковкостью и пластичностью, легко режется ножом.

    Полиморфен -- известны три его модификации. До 215 о С устойчива кубическая гранецентрированная модификация (б-Sr), между 215 и 605 о С -- гексагональная (в-Sr), выше 605 о С -- кубическая объемно-центрированная модификация (г-Sr).

    Температура плавления -- 768 о С, Температура кипения -- 1390 о С.

    Стронций в своих соединениях всегда проявляет валентность +2. По свойствам стронций близок к кальцию и барию, занимая промежуточное положение между ними.

    В электрохимическом ряду напряжений стронций находится среди наиболее активных металлов (его нормальный электродный потенциал равен?2,89 В. Энергично реагирует с водой, образуя гидроксид: Sr + 2H 2 O = Sr(OH) 2 + H 2 ^ .

    Взаимодействует с кислотами, вытесняет тяжёлые металлы из их солей. С концентрированными кислотами (H 2 SO 4 , HNO 3) реагирует слабо.

    Металлический стронций быстро окисляется на воздухе, образуя желтоватую плёнку, в которой помимо оксида SrO всегда присутствуют пероксид SrO 2 и нитрид Sr 3 N 2 . При нагревании на воздухе загорается, порошкообразный стронций на воздухе склонен к самовоспламенению.

    Энергично реагирует с неметаллами -- серой, фосфором, галогенами. Взаимодействует с водородом (выше 200 о С), азотом (выше 400 о С). Практически не реагирует с щелочами.

    При высоких температурах реагирует с CO 2 , образуя карбид:

    5Sr + 2CO 2 = SrC 2 + 4SrO (1)

    Легко растворимы соли стронция с анионами Cl - , I - , NO 3 - . Соли с анионами F - , SO 4 2- , CO 3 2- , PO 4 3- мало растворимы.

    Основные области применения стронция и его химических соединений -- это радиоэлектронная промышленность, пиротехника, металлургия, пищевая промышленность.

    Стронций применяется для легирования меди и некоторых ее сплавов, для введения в аккумуляторные свинцовые сплавы, для обессеривания чугуна, меди и сталей.

    Стронций чистотой 99,99--99,999 % применяется для восстановления урана .

    Магнитотвёрдые ферриты стронция широко употребляются в качестве материалов для производства постоянных магнитов.

    В пиротехнике применяются карбонат, нитрат, перхлорат стронция для окрашивания пламени в карминово-красный цвет. Сплав магний-стронций обладает сильнейшими пирофорными свойствами и находит применение в пиротехнике для зажигательных и сигнальных составов.

    Радиоактивный 90 Sr (период полураспада 28,9 лет) применяется в производстве радиоизотопных источников тока в виде титанита стронция (плотность 4,8 г/смі, а энерговыделение около 0,54 Вт/смі).

    Уранат стронция играет важную роль при получении водорода (стронциево-уранатный цикл, Лос-Аламос, США) термохимическим способом (атомно-водородная энергетика), и в частности разрабатываются способы непосредственного деления ядер урана в составе ураната стронция для получения тепла при разложении воды на водород и кислород.

    Оксид стронция применяется в качестве компонента сверхпроводящих керамик.

    Фторид стронция используется в качестве компонента твердотельных фторионных аккумуляторных батарей с громадной энергоемкостью и энергоплотностью.

    Сплавы стронция с оловом и свинцом применяются для отливки токоотводов аккумуляторных батарей. Сплавы стронций-кадмий для анодов гальванических элементов.

    Радиационные характеристики приведены в таблице 1 .

    Таблица 1- Радиационные характеристики стронция 90

    В случаях попадания изотопа в окружающую среду поступление стронция в организм зависит от степени и характера включенности метаболита в почвенные органические структуры, продукты питания и колеблется от 5 до 30%, при большем проникновении в детский организм. Независимо от пути поступления излучатель накапливается в скелете (в мягких тканях содержится не более 1%). Выводится из организма крайне плохо, что ведет к постоянному накоплению дозы при хроническом поступлении стронция в организм. В отличие от естественных в-активных аналогов (урана, тория и др.) стронций является эффективным в-излучателем, что меняет спектр радиационного воздействия, в том числе и на гонады, эндокринные железы, красный костный мозг и головной мозг. Накапливаемые дозы (фон) колеблется в пределах (до 0,2 х 10 -6 мкКи/г в костях при дозах порядка 4.5 х 10 -2 мЗв/год) .

    Не следует путать действие на организм человека природного (нерадиоактивного, малотоксичного и более того, широко используемого для лечения остеопороза) и радиоактивных изотопов стронция. Изотоп стронция 90 Sr является радиоактивным с периодом полураспада 28.9 лет. 90 Sr претерпевает в-распад, переходя в радиоактивный 90 Y (период полураспада 64 ч.) Полный распад стронция-90, попавшего в окружающую среду, произойдет лишь через несколько сотен лет. 90 Sr образуется при ядерных взрывах и выбросах с АЭС.

    По химическим реакциям радиоактивный и нерадиоактивные изотопы стронция практически не отличаются. Стронций природный -- составная часть микроорганизмов, растений и животных. Независимо от пути и ритма поступления в организм растворимые соединения стронция накапливаются в скелете. В мягких тканях задерживается менее 1 %. Путь поступления влияет на величину отложения стронция в скелете .

    На поведение стронция в организме оказывает влияние вид, пол, возраст, а также беременность, и другие факторы. Например, в скелете мужчин отложения выше, чем в скелете женщин. Стронций является аналогом кальция. Стронций с большой скоростью накапливается в организме детей до четырехлетнего возраста, когда идет активное формирование костной ткани. Обмен стронция изменяется при некоторых заболеваниях органов пищеварения и сердечнососудистой системы. Пути попадания:

    Вода (предельно допустимая концентрация стронция в воде в РФ -- 8 мг/л, а в США -- 4 мг/л)

    Пища (томаты, свёкла, укроп, петрушка, редька, редис, лук, капуста, ячмень, рожь, пшеница)

    Интратрахеальное поступление

    Через кожу (накожное)

    Ингаляционное (через воздух)

    Из растений или через животных стронций-90 может непосредственно перейти в организм человека.

    Люди, работа которых связана со стронцием (в медицине радиоактивный стронций используют в качестве аппликаторов при лечении кожных и глазных болезней. Основные области применения природного стронция -- это радиоэлектронная промышленность, пиротехника, металлургия, металлотермия, пищевая промышленность, пр-во магнитных материалов, радиоактивного -- пр-во атомных электрических батарей. атомно-водородная энергетика, радиоизотопные термоэлектрические генераторы и др.) .

    Влияние нерадиоактивного стронция проявляется крайне редко и только при воздействии других факторов (дефицит кальция и витамина Д, неполноценное питание, нарушения соотношения микроэлементов таких как барий, молибден, селен и др.). Тогда он может вызывать у детей «стронциевый рахит» и «уровскую болезнь» -- поражение и деформация суставов, задержка роста и другие нарушения. Напротив, радиоактивный стронций практически всегда негативно воздействует на организм человека:

    Откладывается в скелете (костях), поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни, опухолей кроветворной ткани и костей.

    Вызывает лейкемию и злокачественные опухоли (рак) костей, а также поражение печени и мозга

    Изотоп стронция 90 Sr является радиоактивным с периодом полураспада 28,79 лет. 90 Sr претерпевает в-распад, переходя в радиоактивный иттрий 90 Y (период полураспада 64 часа). 90 Sr образуется при ядерных взрывах и выбросах с АЭС .

    Стронций является аналогом кальция и способен прочно откладываться в костях. Длительное радиационное воздействие 90 Sr и 90 Y поражает костную ткань и костный мозг, что приводит к развитию лучевой болезни, опухолей кроветворной ткани и костей.

    Попадая в почву, стронций-90 вместе с растворимыми соединениями кальция поступает в растения, из которых может непосредственно или через животных поступить в организм человека. Так создается цепь передачи радиоактивного стронция: почва - растения - животные - человек. Проникая в организм человека, стронций накапливается преимущественно в костях и подвергает, таким образом, организм длительному внутреннему радиоактивному воздействию. Результатом этого воздействия, как показывают исследования ученых, проведенные в опытах на животных (собаках, крысах и др.), является тяжелое заболевание организма. На первый план выступают повреждения кроветворных органов и развитие опухолей в костях. В обычных условиях «поставщиком» радиоактивного стронция являются экспериментальные взрывы ядерного и термоядерного оружия. Исследованиями американских ученых установлено, что даже малое лучевое воздействие, безусловно, вредно для здорового человека. Если же учесть, что и при крайне малых дозах этого воздействия наступают резкие изменения в тех клетках организма, от которых зависит воспроизводство потомства, то вполне понятно, что ядерные взрывы несут смертельную опасность еще... не родившимся! Свое название стронций получил от минерала - стронцианита (углекислой соли стронция), найденного в 1787 г. в Шотландии близ деревушки Стронциан. Английский исследователь А. Крофорд, изучая стронцианит, высказал предположение о наличии в нем новой еще не известной «земли». Индивидуальную особенность стронцианита установил также и Клапрот. Английский химик Т. Хоп в 1792 г. доказал наличие в стронцианите нового металла, выделенного в свободном виде в 1808 г. Г. Дэви .

    Однако, независимо от западных ученых, русский химик Т.Е. Ловиц в 1792 г., исследуя минерал барит, пришел к заключению, что в нем, помимо окиси бария, в качестве примеси находится и «стронцианова земля». Чрезвычайно осторожный в своих заключениях, Ловиц не решился опубликовать их до окончания вторичной проверки опытов, требовавших накопления большого количества «стронциановой земли». Поэтому исследования Ловица «О стронциановой земле в тяжелом шпате», хотя и были опубликованы после исследований Клапрота, фактически же проведены раньше его. Они свидетельствуют об открытии стронция в новом минерале - сернокислом стронции, называемом теперь целестином. Из этого минерала простейшие морские организмы - радиолярии, акантарии - строят иглы своего скелета. Из иголочек отмирающих беспозвоночных образовались скопления и самого целестина

    1.2 Накопление радионуклида стронция - 90 в почвах и растениях

    Продовольственное и техническое качество продукции - зерна, клубней, масличных семян, корнеплодов, получаемой от облучённых растений, сколько- либо существенно не ухудшается даже при снижении урожая до 30-40 %.

    Содержание масла в семенах подсолнечника и лотса зависит от дозы облучения, получаемой растениями, и фазы их развития в момент начала облучения. Аналогичная зависимость наблюдается и по выходу сахара в урожае корнеплодов облучённых растений свеклы. Содержание витамина С в плодах томатов, собранных с облучённых растений, зависит от фазы развития растений в период начала облучения и дозы облучения. Например, при облучении растении во время массового цветения и начала плодоношения дозами 3 - 15 кР содержание в плодах томатов витамина С повышалось по сравнению с контролем на 3 - 25 %. Облучение растений в период массового цветения и начало плодоношения дозой до 10 кР затормаживает развитие семян у формирующихся плодов, которые обычно становятся бессемянными .

    Аналогичная закономерность получена в опытах с картофелем. При облучении растений в период клубнеобразования урожай клубней при облучении дозами 7 - 10 кР практически не снижается. Если растения облучаются в более раннюю фазу развития, урожай клубней уменьшается в среднем на 30 - 50 %. Кроме того, клубни получаются не жизнеспособными из-за стерильности глазков.

    Облучение вегетирующих растений не только приводит к уменьшению их продуктивности, но и снижает посевные качества формирующихся семян. Так при облучении вегетирующих растений не только приводит к уменьшению их продуктивности, но и снижает посевные качества формирующихся семян. Так при облучении зерновых культур в наиболее чувствительные фазы развития (кущение, выход в трубку) сильно снижается урожай, однако всхожесть получаемых семян существенно снижается, что даёт возможность не использовать их для посева. Если же растения облучают в начале молочной спелости (когда происходит формирование звена) даже в относительно высоких дозах, урожай зерна сохраняется практически полностью, однако такие семена не могут быть использованы для посева ввиду предельно низкой всхожести.

    Таким образом радиоактивные изотопы не вызывают заметных повреждений растительных организмов, однако в урожае сельскохозяйственных культур они накапливаются в значительных количествах.

    Значительная часть радионуклидов находится в почве, как на поверхности, так и в нижних слоях, при этом их миграция во многом зависит от типа почвы, её гранулометрического состава, водно-физических и агрохимических свойств.

    Основными радионуклидами, определяющими характер загрязнения, в нашей области является цезий - 137 и стронция - 90, которые по разному сортируются почвой. Основной механизм закрепления стронция в почве - ионный обмен, цезия - 137 обменной формой либо по типу ионообменной сорбции на внутренней поверхности частиц почвы .

    Поглощение почвой стронция - 90 меньше цезия - 137, а следовательно, он является более подвижным радионуклидом.

    В момент выброса цезия - 137 в окружающие среду, радионуклид изначально находится в хорошо растворимом состоянии (парогазовая фаза, мелкодисперсные частицы и т.д.)

    В этих случаях поступления в почву цезий - 137 легкодоступен для усвоения растениями. В дальнейшем радионуклид может включаться в различные реакции в почве, и подвижность его снижается, увеличивается прочность закрепления, радионуклид «стареет», а такое «старение» представляет комплекс почвенных кристаллохимических реакций с возможным вхождением радионуклида в кристаллическую структуру вторичных глинистых минералов.

    Механизм закрепления радиоактивных изотопов в почве, их сорбция имеет большое значение, так как сорбция определяет миграционные качества радиоизотопов, интенсивность поглощения их почвами, а, следовательно, и способность проникать их в корни растений. Сорбция радиоизотопов зависит от многих факторов и одним из основных является механический и минералогический состав почвы тяжёлыми по гранулометрическому составу почвами поглощённые радионуклиды, особенно цезий - 137, закрепляются сильнее, чем лёгкими и с уменьшением размера механических фракций почвы прочность закрепления ими стронция - 90 и цезия - 137 повышается. Наиболее прочно закрепляются радионуклиды илистой фракцией почвы.

    Большему удержанию радиоизотопов в почве способствует наличие в ней химических элементов, близких по химическим свойствам к этим изотопам. Так, кальций - химический элемент, близкий по своим свойствам стронцию - 90 и внесение извести, особенно на почвы с высокой кислотностью, ведёт к увеличению поглотительной способности стронция - 90 и к уменьшению его миграции. Калий схож по своим химическим свойствам с цезием - 137. Калий, как неизотопный аналог цезия находится в почве в макроколичествах, в то время как цезий - в ультра микроконцентрациях. Вследствие этого в почвенном растворе происходит сильное разбавление микроколичеств цезия-137 ионами калия, и при поглощении их корневыми системами растений отмечается конкуренция за место сорбции на поверхности корней. Поэтому при поступлении этих элементов из почвы в растениях наблюдается антагонизм ионов цезия и калия .

    Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количество осадков).

    Установлено, что стронций-90, попавший на поверхность почвы, вымывается дождём в самые нижние слои. Следует заметить, что миграция радионуклидов в почвах протекает медленно и их основная часть находится в слое 0 - 5 см.

    Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической особенности растений. На кислых почвах радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых. Снижение кислотности почвы, как правило, способствует уменьшению размеров перехода радионуклидов в растения. Так, в зависимости от свойства почвы содержание стронция - 90 и цезия - 137 в растениях может изменяться в среднем в 10 - 15 раз.

    А межвидовые различия сельскохозяйственных культур в накопление этих радионуклидов наблюдается зернобобовыми культурами. Например, стронций - 90 и цезий - 137, в 2 - 6 раз поглощается интенсивнее зернобобовыми культурами, чем злаковыми .

    Поступление стронция-90 и цезия-137 в травостой на лугах и пастбищах определяется характером распределения в почвенном профиле.

    В загрязнённой зоне, луга Рязанской области загрязнены на площади 73491 га, в том числе с плотностью загрязнения 1,5 Ки/км 2 - 67886 (36 % от общей площади), с плотностью загрязнения 5,15 Ки/км 2 - 5605 га (3%).

    На целинных участка, естественных лугах, цезий находится в слое 0-5 см, за прошедшие годы после аварии не отмечена значительная вертикальная миграция его по профилю почвы. На перепаханных землях цезий - 137 находится в пахотном слое.

    Пойменная растительность в большей степени накапливает цезий - 137, чем суходольная. Так при загрязнении поймы 2,4 Ки/км 2 в траве было обнаружено Ки/кг сухой массы, а на суходольной при загрязнении 3,8 Ки/км 2 в траве содержалось Ки /кг .

    Накопление радионуклидов травянистыми растениями зависит от особенностей строения дернины. На злаковом лугу с мощной плотной дерниной содержание цезия - 137 в фитомассе в 3 - 4 раза выше, чем на разнотравном с рыхлой маломощной дерниной.

    Культуры с низким содержанием калия меньше накапливают цезия. Злаковые травы накапливают меньше цезия по сравнению с бобовыми. Растения сравнительно устойчивы к радиоактивному воздействию, но они могут накапливать такое количество радионуклидов, что становятся не пригодными к употреблению в пищу человека и на корм скоту.

    Поступление цезия - 137 в растения зависит от типа почвы. По степени уменьшения накопления цезия в урожае растения почвы можно расположить в такой последовательности: дерново-подзолистые супесчаные, дерново-подзолистые суглинистые, серая лесная, чернозёмы и т.д. Накопление радионуклидов в урожае зависит не только от типа почвы, но и от биологической особенности растений.

    Отмечается, что кальциелюбивые растения обычно поглощают больше стронция - 90,чем растения бедные кальцием. Больше всего накапливают стронций - 90 бобовые культуры, меньше корнеплоды и клубнеплоды, и ещё меньше злаковые .

    Накопление радионуклидов в растении зависит от содержания в почве элементов питания. Так установлено, что минеральное удобрение, внесённое в дозах N 90, Р 90, увеличивает концентрацию цезия - 137 в овощных культурах в 3 - 4 раза, а аналогичные внесения калия в 2 - 3 раза снижает его содержание. Положительный эффект на уменьшение поступления стронция - 90 в урожай зернобобовых культур оказывает содержание кальций содержащих веществ. Так, например, внесение в выщелочный чернозём извести в дозах, эквивалентных гидролитической кислотности, уменьшает поступление стронция-90 в зерновые культуры в 1,5 - 3,5 раза.

    Наибольший эффект на снижение поступления стронция - 90 в урожай растений достигает внесением полного минерального удобрения на фоне доломита. На эффективность накопления радионуклидов в урожае растений оказывают влияние органические удобрения и метеорологические условия, а также и время их пребывание в почве. Установлено, что накопление стронция - 90, цезия - 137 через пять лет после их попадания в почву снижается в 3 - 4 раза .

    Таким образом, миграция радионуклидов во многом зависит от типа почвы, её механического состава, водно-физических и агрохимических свойств. Так на сорбцию радиоизотопов влияют многие факторы, и одним из основных являются механический и минералогический состав почвы. Тяжёлыми по механическому составу почвами поглощённые радионуклиды, особенно цезий-137, закрепляются сильнее, чем лёгкими. Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количества осадков).

    Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической способности растений.

    Радиоактивные вещества, попадающие в атмосферу, в конечном счете, концентрируются в почве. Через несколько лет после радиоактивных выпадений на земную поверхность поступления радионуклидов в растения из почвы становится основным путём попадания их в пищу человека и корм животным. При аварийных ситуациях, как показала авария на Чернобыльской АЭС, уже на второй год после выпадений основной путь попадания радиоактивных веществ в пищевые цепи - поступление радионуклидов из почвы в растения.

    Радиоактивные вещества, попадающие в почву, могут из неё частично вымываться и попадать в грунтовые воды. Однако почва довольно прочно удерживает попадающие в неё радиоактивные вещества. Поглощение радионуклидов обуславливает очень длительное (в течение десятилетий) их нахождение в почвенном покрове и непрекращающееся поступления в сельскохозяйственную продукцию. Почва как основной компонент агроценоза оказывает определяющее влияние на интенсивность включения радиоактивных веществ в кормовые и пищевые цепи.

    Поглощение почвами радионуклидов препятствует их передвижению по профилю почв, проникновению в грунтовые воды и в конечном счёте определят их аккумуляцию в верхних почвенных горизонтах.

    Механизм усвоения радионуклидов корнями растений сходен с поглощением основных питательных веществ - макро и микроэлементов. Определённое сходство наблюдается в поглощении растениями и передвижения по ним стронция - 90 и цезия - 137 и их химических аналогов - кальция и калия, поэтому содержание данных радионуклидов в биологических объектах иногда выражают по отношению к их химическим аналогам, в так называемых стронциевых и цезиевых единицах.

    Радионуклиды Ru-106, Ce-144, Co-60 концентрируются преимущественно в корневой системе и в незначительных количествах передвигаются в назёмные органы растений. В отличие от них стронций-90 и цезий-137 в относительно больших количествах накапливаются в наземной части растений .

    Радионуклиды, поступившие в подземную часть растений, в основном концентрируются в соломе (листья и стебли), меньше - в мягкие (колосья, метёлки без зерна. Некоторые исключения из этой из этой закономерности составляет цезий, относительное содержание которого в семенах может достигать 10 % и выше общего количества его в надземной части. Цезий интенсивно передвигается по растению и относительно в больших количествах накапливается в молодых органах, чем очевидно вызвана повышенная концентрация его в зерне .

    В общем, накопление радионуклидов и их содержание на единицу массы сухого вещества в процессе роста растений наблюдается такая же закономерность, как и для биологически важных элементов: с возрастом растений в их надземных органах увеличивается абсолютное количество радионуклидов и снижается содержание на единицу массы сухого вещества. По мере увеличения урожая, как правило, уменьшается содержание радионуклидов на единицу массы.

    Из кислых почв радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых, нейтральных и слабощелочных. В кислых почвах повышается подвижность стронция - 90 и цезия - 137 снижается прочность их растениями. Внесение карбонатов кальция и калия или натрия в кислую дерново-подзолистую почву в количествах, эквивалентных гидролической кислотности, снижает размеры накопления долгоживущих радионуклидов стронция и цезия в урожае.

    Существует тесная обратная зависимость накопления стронция-90 в растениях от содержания в почве обменного кальция (поступление стронция уменьшается с увеличением содержания обменного кальция в почве).

    Следовательно, зависимость поступления стронция-90 и цезия-137 из почвы в растения довольно сложная, и не всегда её можно установить по какому-либо одному из свойств, в разных почвах необходимо учитывать комплекс показателей.

    Пути миграции радионуклидов в организм человека различны. Значительная их доля поступает в организм человека по пищевой цепи: почва - растения - сельскохозяйственные животные - продукция животноводства - человек. В принципе радионуклиды могут поступать в организм животных через органы дыхания, желудочно-кишечный тракт и поверхность кожи. Если в период

    радиоактивных выпадений крупных рогатый скот находится на пастбище, то поступление радионуклидов может составить (в относительных единицах): через пищеварительный канал 1000, органы дыхания 1, кожу 0,0001. Следовательно, в условиях радиоактивных выпадений основное внимание должно быть обращено на максимально возможное снижение поступления радионуклидов в организм сельскохозяйственных животных через желудочно-кишечный тракт.

    Так как радионуклиды, поступая в организм животных и человека, могут накапливаться и, оказывая неблагоприятное воздействие на здоровье и генофонд человека необходимо проводить мероприятия, снижающие поступление радионуклидов в сельскохозяйственные растения, снижение накопления радиоактивных веществ в организмах сельскохозяйственных животных.

    1.3 Особенности миграции стронция-90 в окружающую среду

    Радионуклид 90 Sr характеризуется большей подвижностью в почвах по сравнению с 137 Сs. Поглощение 90 Sr в почвах в основном обусловлено ионным обменом. Большая часть задерживается в верхних горизонтах. Скорость миграции его по почвенному профилю зависит от физико-химических и минералогических особенностей почвы.

    При наличии в почвенном профиле перегнойного горизонта, расположенного под слоем подстилки или дернины, 90 Sr концентрируется в этом горизонте. В таких почвах, как дерново-подзолистая песчаная, перегнойно-торфянисто-глеевая суглинистая на песке, черноземно-луговая оподзоленная, выщелоченный чернозем, наблюдается некоторое увеличение содержания радионуклида в верхней части иллювиального горизонта.

    В засоленных почвах появляется второй максимум, что связано с меньшей растворимостью сульфата стронция и его подвижностью. В верхнем горизонте он задерживается в солевой корке. Концентрирование в перегнойном горизонте объясняется высоким содержанием гумуса, большой величиной емкости поглощения катионов и образованием малоподвижных соединений с органическим веществом почв.

    В модельных экспериментах при внесении 90 Sr в разные почвы, помещенные в вегетационные сосуды, было установлено, что скорость его миграции в условиях опыта возрастает с увеличением содержания обменного кальция. Повышение миграционной способности 90 Sr в почвенном профиле при увеличении содержания кальция наблюдалось и в полевых условиях. Миграция стронция-90 возрастает также с увеличением кислотности и содержания органического вещества .

    В миграции 90Sr большую роль играет лесная растительность. В период интенсивных радиоактивных выпадений деревья выполняют роль экрана, на котором осаждались радиоактивные аэрозоли. Задержанные поверхностью листьев и хвои радионуклиды поступают на поверхность почвы с опавшими листьями и хвоей. Особенности лесной подстилки оказывают существенное влияние на содержание и распределение стронция-90. В лиственных подстилках содержание 90 Sr постепенно падает от верхнего слоя к нижнему, в хвойных происходит значительное накопление радионуклида в нижней гумусированной части подстилки.

    Таблица 2 - Образование стронция 90

    При делении 235 U и 239 Pu тепловыми нейтронами в реакторе 90 Sr образуется с выходами 5,77 и 2,25 %. Значительные количества 90 Sr (7,4 · 10 17 Бк) были выброшены в атмосферу при испытаниях ядерного оружия в 1945-1980 гг. .

    При выбросах большая часть радионуклидов попадает в стратосферу (слой атмосферы, лежащий на высоте 10-50 км) и остается там в течение многих месяцев, медленно опускаясь и рассеиваясь по всей поверхности земного шара. Период полураспада 89 Sr составляет 50,5 сут., и он, попав в стратосферу при ядерных взрывах, в основном там и распадается, не представляя такой большой радиационной опасности для землян, как 90 Sr и 137 Сs, которые, выпадая, загрязняют поверхность Земли на многие годы.

    С другой стороны, при авариях на ядерных реакторах, таких, как на Чернобыльской АЭС, когда накопленная равновесная активность 89 Sr в 10 раз превышает активность 90 Sr, который из-за своего большого периода полураспада не успевает накопиться за 2-3 года работы реактора, ситуация меняется. Сразу после аварии на Чернобыльской АЭС активность выброшенных короткоживущих радионуклидов 89 Sr была во много раз выше, чем 90 Sr или 137 Cs .

    После испытаний ядерного оружия радиоактивные осадки состоят в основном из водорастворимых и способных к ионному обмену форм 90 Sr, в то же время после аварии на Чернобыльской АЭС 90 Sr нередко осаждался в формах устойчивых соединений.

    При работе АЭС 90 Sr, как и 137 Cs, выброшенный в окружающую среду, в конечном итоге накапливается или в верхних слоях почвы в наземных системах, или в донных осадках природных водных резервуаров. При этом стронций мигрирует на очень малые расстояния, например на 1 см за несколько лет.

    Проведенные в конце 1980-х гг. исследования невспаханных участков в Кыштыме, загрязненных в 1957 г. 90 Sr и другими радионуклидами при взрыве отходов, показали, что 90 Sr за этот период времени достиг глубины 15 см, и это означает, что скорость его миграции составила 0,5 см/г. Из почвы через корневую систему 90 Sr выносится в растения и входит в состав зерна, бобов, моркови и других продуктов. Этот вынос определяется коэффициентом переноса (КП), который зависит от вида почв и рН среды.

    С целью уменьшения выноса 90 Sr из почвы в растения применяют вспашку почвы и внесение удобрений .

    Наиболее эффективна глубокая вспашка, приводящая к погребению активности ниже того слоя, в котором находятся корни растений. В районах Южного Урала, загрязненных 90 Sr после аварии в Кыштыме, были получены хорошие результаты при вспашке на глубину 50 см. Из данных таблицы следует, что действенной мерой, наряду с внесением с удобрениями N, P и К, является известкование почвы.

    Таблица 3 - Некоторые характерные значения КП 90 Sr из почвы в растение (Бк · кг- 1 сухой культуры/Бк · кг- 1 сухой почвы) (Пояснение. КП приводится для верхнего слоя глубиной 20 см, а значения для трав даны для верхнего слоя почвы глубиной 10 см)

    Таблица 4 - Влияние сельскохозяйственных контрмер на поглощение 90 Sr луговыми растениями в окрестностях Гомеля (Белоруссия)

    Радиоактивный стронций поступает в организм человека через ЖКТ, легкие и кожу. Растворимые соединения стронция хорошо всасываются из ЖКТ, величина резорбции -- 0,1-0,6, и резорбция составляет менее 0,01 для плохо растворимых соединений. Стронций быстро всасывается из легких. Через 5 мин после интратрахеального введения в количестве 1,48 · 10 4 Бк/г в легких остается 33,3 % введенного количества, через сутки -- 0,39 %. При нанесении изотопов стронция на кожу в количестве 2,4 · 10 5 Бк/см 2 фиксация активности происходит сразу же после загрязнения кожной поверхности .

    При резорбции стронция из ЖКТ важное значение имеют диета, химическое соединение радионуклида и физиологические факторы (возраст, лактация и беременность, состояние минерального обмена, нервной и эндокринной систем). Величина всасывания радионуклида из ЖКТ уменьшается с увеличением возраста, с повышением содержания кальция и фосфора в диете, при введении высоких доз тироксина. Прием альгината натрия за 20 мин до введения стронция понижает его содержание в крови в 8-10 раз, а лактоза, лизин и аргинин, наоборот, удваивают величину всасывания стронция из ЖКТ.

    Независимо от пути и периодичности поступления в организм растворимых соединений радиоактивного стронция, он избирательно накапливается в скелете, а в мягких тканях задерживается менее 1 %. После внутривенного введения радиоактивного стронция в организм человека через 100 суток в нем останется 20 % от введенного количества, в то время как у обезьян -- 47 %, а у кроликов -- 7,5 %. Доля отложений стронция в скелете зависит от пути его поступления. При интратрахеальном поступлении депонируется 76 %, ингаляционном -- 31,6 %, внутрибрюшном -- 81,2 % и накожном -- всего 7 ? .

    В экспериментах на животных установлено, что при внутримышечном или пероральном введении радиоактивного стронция самкам в разные сроки беременности большая часть (50-70) его откладывалась в плодах в последние дни беременности. Распределение радиоактивного стронция в разных частях одной и той же кости и в разных костях неравномерное. Стронций откладывается в участках костей, обладающих наибольшей зоной роста, где происходит усиленное образование кости.

    Учитывая функцию удержания и выведения и 90 Sr через почки, Абрамов и Голутвина рассчитали дозу от этих радионуклидов на поверхности кости при однократном и хроническом введении радионуклидов в количестве 37 кБк/сут. Из таблицы видно, что при однократном введении радионуклидов стронция суммарная доза от 89 Sr по прошествии нескольких периодов полураспада этого нуклида практически не возрастает, а доза от 90 Sr, обусловленная суммой малых констант распада и биологического выведения, непрерывно увеличивается.

    Таблица 5- Оцененная доза на поверхности кости при однократном и хроническом введении в организм радионуклидов 89 Sr и 90 Sr в количестве 37 кБк/сут.

    Время после введения, сут.

    Доза от 89 Sr, мЗв

    Доза от 90 Sr, мЗв

    Однократное введение

    Хроническое введение

    Предложена возрастная модель отложения стронция и других щелочноземельных элементов в кости человека во всем возрастном диапазоне, начиная с рождения. Показано, что ожидаемые эквивалентные дозы для костного мозга при поступлении 90 Sr в первые месяцы после рождения на порядок выше, чем при поступлении в организм взрослого человека.

    Выведение стронция из организма человека и животных происходит как с калом, так и с мочой. При пероральном поступлении большая часть стронция выделяется с калом. За 8 суток суммарное выделение 89 Sr составляет 77,9 %, из них 5 % с мочой.

    Установлено несколько периодов полувыведения 90 Sr из организма. Короткий период полувыведения (2,5-8,5 сут.) характеризует выведение стронция из мягких тканей, длинный период (90-154 сут.) -- преимущественно из костей. При длительном пероральном или парэнтеральном введении в организм 90 Sr период полувыведения из скелета значительно увеличивается, а начальный короткий период полувыведения отсутствует или очень мал. У человека и животных после однократного перорального поступления радионуклидов стронция с молоком во время лактации выделяется от 0,04 до 4 % на 1 л молока от введенного радионуклида; при хроническом поступлении 90 Sr в организм с молоком выделяется 0,05-6,3 % на 1 л по отношению к дневной норме .

    Введение остроэффективных количеств 90 Sr вызывает развитие типичной острой лучевой патологии. Возникают выраженные изменения со стороны периферической крови: лейкопения, лимфопения, нейтропения, ретикулопения. Наблюдаются изменения красной крови, ускорение реакции оседания эритроцитов, замедление свертывания крови и увеличение объема плазмы.

    У собак, получавших с пищей ежедневно 0,74 кБк/кг 90 Sr в течение 3-3,5 лет, выявлены нарушения в углеводном обмене, изменения секреторной и экскреторной функций печени и почек. Меньшие количества 90 Sr (0,675 кБк/кг) к существенным функциональным изменениям в их организме не привели, однако за 9-13 лет из подопытной группы погибло 80 % собак, а из контрольной -- 11 % .

    Длительное введение собакам 90 Sr с пищей (0,74-0,074 кБк/кг) и накопление суммарной поглощенной дозы в скелете до 3,6-9,0 Гр приводит к учащению возникновения у них доброкачественных и злокачественных опухолей мягких тканей (в 3-5 раз чаще по сравнению с контрольными животными). Хроническое введение этим животным 90 Sr (по 0,74 кБк/кг в сутки в течение 3 лет), создающее мощность тканевой дозы в скелете до 1,5 Гр/г., может вызвать развитие лейкозов и остеосарком. При хроническом введении в 10 раз меньших количеств этого радионуклида (поглощенная доза в скелете до 0,5 Гр/г.) наблюдаются нарушения в развитии потомства и понижение его жизнеспособности .

    Радиоактивность 90 Sr определяют по дочернему 90 Y, который осаждается в виде оксалатов. Из продуктов питания 90 Y выделяют экстракцией моноизооктиловым эфиром метилфосфоновой кислоты. Из золы костной ткани 90 Y экстрагируют трибутилфосфатом. Активность измеряют на низкофонной установке. Определение 89 Sr в пищевых продуктах, растительности и костной ткани основано на осаждении стронция дымящей азотной кислотой с последующим измерением активности. При попадании радиоактивных изотопов стронция на открытые участки кожи дезактивацию проводят 5%-м раствором пентацина, 5%-м раствором Na 2 (ЭДТА) или 2%-м раствором соляной кислоты, а также моющими порошками. При попадании радионуклидов стронция через ЖКТ принимают внутрь препарат «Адсорбар» или сернокислый барий (25 г с 200 мл воды), альгинат натрия или кальция (15 г с 200 мл воды) или препарат «Полисурьмин» (4 г с 200 мл воды). Применяют рвотные средства и проводят обильное промывание желудка. После очищения желудка осуществляют повторное введение адсорбентов с солевыми слабительными. В случае поражения пылевыми продуктами проводят обильное промывание носоглотки и полости рта, используют отхаркивающие, а также мочегонные средства.

    В соответствии с НРБ-99 допустимая концентрация 90 Sr в воздухе рабочих помещений примерно в 24 раза ниже, чем 89 Sr, что указывает на его исключительную радиационную опасность. Для населения допустимая концентрация 90 Sr в атмосферном воздухе регламентируется (НРБ-99) величиной, равной 2,7 Бк/м 3 , что находится за пределами чувствительности большинства методов выделения и измерения радиоактивности этого радионуклида.

    Таблица 6- ПГП, e , ДОА в воздухе рабочих помещений в зависимости от химических соединений и ядерно-физических свойств радионуклидов 89 Sr и 90 Sr, МЗУА и МЗА этих изотопов на рабочем месте

    Таблица 7- ДОА в воздухе, e , ПГП с воздухом, водой и пищей радионуклидов 89 Sr и 90 Sr и УВ при его поступлении с водой для населения

    Исследованиями установлено, что 80-90% радионуклидов сосредоточено в активной зоне расположения основной массы корней сельскохозяйственных культур. На необрабатываемых после чернобыльской катастрофы землях практически все радионуклиды находятся в верхней части (до 10-15 см) гумусовых горизонтов, а на пахотных почвах радионуклиды распределены сравнительно равномерно по всей глубине обрабатываемого слоя. Расчеты показывают, что в ближайшей перспективе самоочищение корнеобитаемого слоя загрязненных почв за счет вертикальной миграции радионуклидов будет незначительным .

    Вместе с тем наблюдаются процессы локального вторичного загрязнения почв сельскохозяйственных угодий за счет горизонтальной миграции радионуклидов вследствие ветровой и водной эрозии. Содержание цезия-137 в пахотном горизонте различных элементов рельефа склоновых земель в результате водной эрозии на посевах однолетних культур за девять лет перераспределилось до 1,5-3,0 раз.

    Увеличение плотности загрязнения почв цезием-137 в зоне аккумуляции (нижние части склонов и понижения) по сравнению с зоной смыва составило в среднем от 13% при ежегодном смыве почвы менее 5 т/га до 75% - при смыве 12-20 т/га. На бессменных посевах многолетних трав твердого стока не наблюдалось и достоверных различий в плотности загрязнения почв по элементам склонов не установлено. В результате ветровой эрозии осушенных торфяно-болотных и песчаных почв, используемых под посев однолетних культур, локальные различия в плотности загрязнения пахотного горизонта радиоцезием достигали 1,5-2,0 раз. Это подчеркивает необходимость защиты почв от водной и ветровой эрозии, что обеспечивает также снижение потерь гумусового слоя и уменьшает вероятность загрязнения продукции на локальных участках угодий.

    Подобные документы

      Особенности аккумуляции радионуклидов растительностью. Пути миграции радионуклидов в окружающей среде. Аккумуляция радионуклидов растениями лесных фитоценозов. Влияние внешнего облучения и поглощенных радионуклидов на жизнедеятельность растений.

      курсовая работа , добавлен 22.08.2008

      курсовая работа , добавлен 03.11.2011

      Природные экосистемы загрязнены техногенными радионуклидами из разных источников: из атмосферы – результат испытаний ядерного оружия, значительное количество радионуклидов поступило в окружающую среду в результате деятельности ядерных предприятий.

      реферат , добавлен 17.12.2004

      Источники радиоактивного загрязнения. Катастрофа на ЧАЭС и ее последствия на территории Республики Беларусь. Особенности аккумулирования радионуклидов грибами, их классификация по накопительной способности. Снижение содержания радионуклидов в грибах.

      курсовая работа , добавлен 22.08.2008

      Радиационная безопасность как важнейший гигиенический критерий экологической безопасности материала. Понятие радионуклидов, их содержание в строительных материалах. Характеристика строительных материалов по содержанию радионуклидов и экологичности.

      реферат , добавлен 03.02.2011

      Радионуклиды - нестабильные элементы, которые с относительно высокой интенсивностью подвергаются ядерному распаду. Концентрация радионуклидов в окружающей среде. Сельскохозяйственная деятельность в загрязненных зонах. Влияние радионуклидов на организм.

      презентация , добавлен 17.11.2013

      Понятие тяжелых металлов, их биогеохимические свойства и формы нахождения в окружающей среде. Подвижность тяжелых металлов в почвах. Виды нормирования тяжелых металлов в почвах и растениях. Аэрогенный и гидрогенный способы загрязнения почв городов.

      курсовая работа , добавлен 10.07.2015

      История открытия явления деления ядра урана-235 под воздействием тепловых нейтронов. Характеристика и причины образования в природе радионуклидов. Понятие природных ядерных реакторов. Анализ размещения буровых скважин на месторождении Богомбо (Габон).

      презентация , добавлен 10.02.2014

      Исследование наиболее опасных загрязнителей окружающей среды: тяжелых металлов, лекарственных препаратов, минеральных удобрений и радионуклидов. Особенности влияния различных факторов на здоровье людей. Опасность накопления загрязнения в экосистеме.

      реферат , добавлен 17.04.2015

      Описание закономерностей распределения микроэлементов в различных типах ландшафтов территории. Выявление их преобладания или недостатка в почвах и растениях. Анализ особенностей биологического поглощения растениями некоторых химических элементов из почвы.

    1.2 Накопление радионуклида стронция – 90 в почвах и растениях

    Продовольственное и техническое качество продукции – зерна, клубней, масличных семян, корнеплодов, получаемой от облучённых растений, сколько- либо существенно не ухудшается даже при снижении урожая до 30-40 %.

    Содержание масла в семенах подсолнечника и лотса зависит от дозы облучения, получаемой растениями, и фазы их развития в момент начала облучения. Аналогичная зависимость наблюдается и по выходу сахара в урожае корнеплодов облучённых растений свеклы. Содержание витамина С в плодах томатов, собранных с облучённых растений, зависит от фазы развития растений в период начала облучения и дозы облучения. Например, при облучении растении во время массового цветения и начала плодоношения дозами 3 – 15 кР содержание в плодах томатов витамина С повышалось по сравнению с контролем на 3 – 25 %. Облучение растений в период массового цветения и начало плодоношения дозой до 10 кР затормаживает развитие семян у формирующихся плодов, которые обычно становятся бессемянными .

    Аналогичная закономерность получена в опытах с картофелем. При облучении растений в период клубнеобразования урожай клубней при облучении дозами 7 – 10 кР практически не снижается. Если растения облучаются в более раннюю фазу развития, урожай клубней уменьшается в среднем на 30 – 50 %. Кроме того, клубни получаются не жизнеспособными из-за стерильности глазков.

    Облучение вегетирующих растений не только приводит к уменьшению их продуктивности, но и снижает посевные качества формирующихся семян. Так при облучении вегетирующих растений не только приводит к уменьшению их продуктивности, но и снижает посевные качества формирующихся семян. Так при облучении зерновых культур в наиболее чувствительные фазы развития (кущение, выход в трубку) сильно снижается урожай, однако всхожесть получаемых семян существенно снижается, что даёт возможность не использовать их для посева. Если же растения облучают в начале молочной спелости (когда происходит формирование звена) даже в относительно высоких дозах, урожай зерна сохраняется практически полностью, однако такие семена не могут быть использованы для посева ввиду предельно низкой всхожести.

    Таким образом радиоактивные изотопы не вызывают заметных повреждений растительных организмов, однако в урожае сельскохозяйственных культур они накапливаются в значительных количествах.

    Значительная часть радионуклидов находится в почве, как на поверхности, так и в нижних слоях, при этом их миграция во многом зависит от типа почвы, её гранулометрического состава, водно-физических и агрохимических свойств.

    Основными радионуклидами, определяющими характер загрязнения, в нашей области является цезий – 137 и стронция – 90, которые по разному сортируются почвой. Основной механизм закрепления стронция в почве – ионный обмен, цезия – 137 обменной формой либо по типу ионообменной сорбции на внутренней поверхности частиц почвы .

    Поглощение почвой стронция – 90 меньше цезия – 137, а следовательно, он является более подвижным радионуклидом.

    В момент выброса цезия – 137 в окружающие среду, радионуклид изначально находится в хорошо растворимом состоянии (парогазовая фаза, мелкодисперсные частицы и т.д.)

    В этих случаях поступления в почву цезий – 137 легкодоступен для усвоения растениями. В дальнейшем радионуклид может включаться в различные реакции в почве, и подвижность его снижается, увеличивается прочность закрепления, радионуклид «стареет», а такое «старение» представляет комплекс почвенных кристаллохимических реакций с возможным вхождением радионуклида в кристаллическую структуру вторичных глинистых минералов.

    Механизм закрепления радиоактивных изотопов в почве, их сорбция имеет большое значение, так как сорбция определяет миграционные качества радиоизотопов, интенсивность поглощения их почвами, а, следовательно, и способность проникать их в корни растений. Сорбция радиоизотопов зависит от многих факторов и одним из основных является механический и минералогический состав почвы тяжёлыми по гранулометрическому составу почвами поглощённые радионуклиды, особенно цезий – 137, закрепляются сильнее, чем лёгкими и с уменьшением размера механических фракций почвы прочность закрепления ими стронция – 90 и цезия – 137 повышается. Наиболее прочно закрепляются радионуклиды илистой фракцией почвы.

    Большему удержанию радиоизотопов в почве способствует наличие в ней химических элементов, близких по химическим свойствам к этим изотопам. Так, кальций – химический элемент, близкий по своим свойствам стронцию – 90 и внесение извести, особенно на почвы с высокой кислотностью, ведёт к увеличению поглотительной способности стронция – 90 и к уменьшению его миграции. Калий схож по своим химическим свойствам с цезием – 137. Калий, как неизотопный аналог цезия находится в почве в макроколичествах, в то время как цезий – в ультра микроконцентрациях. Вследствие этого в почвенном растворе происходит сильное разбавление микроколичеств цезия–137 ионами калия, и при поглощении их корневыми системами растений отмечается конкуренция за место сорбции на поверхности корней. Поэтому при поступлении этих элементов из почвы в растениях наблюдается антагонизм ионов цезия и калия .

    Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количество осадков).

    Установлено, что стронций–90, попавший на поверхность почвы, вымывается дождём в самые нижние слои. Следует заметить, что миграция радионуклидов в почвах протекает медленно и их основная часть находится в слое 0 – 5 см.

    Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической особенности растений. На кислых почвах радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых. Снижение кислотности почвы, как правило, способствует уменьшению размеров перехода радионуклидов в растения. Так, в зависимости от свойства почвы содержание стронция – 90 и цезия – 137 в растениях может изменяться в среднем в 10 – 15 раз.

    А межвидовые различия сельскохозяйственных культур в накопление этих радионуклидов наблюдается зернобобовыми культурами. Например, стронций – 90 и цезий – 137, в 2 – 6 раз поглощается интенсивнее зернобобовыми культурами, чем злаковыми .

    Поступление стронция–90 и цезия–137 в травостой на лугах и пастбищах определяется характером распределения в почвенном профиле.

    В загрязнённой зоне, луга Рязанской области загрязнены на площади 73491 га, в том числе с плотностью загрязнения 1,5 Ки/км 2 - 67886 (36 % от общей площади), с плотностью загрязнения 5,15 Ки/км 2 - 5605 га (3%).

    На целинных участка, естественных лугах, цезий находится в слое 0-5 см, за прошедшие годы после аварии не отмечена значительная вертикальная миграция его по профилю почвы. На перепаханных землях цезий – 137 находится в пахотном слое.

    Пойменная растительность в большей степени накапливает цезий – 137, чем суходольная. Так при загрязнении поймы 2,4 Ки/км 2 в траве было обнаружено Ки/кг сухой массы, а на суходольной при загрязнении 3,8 Ки/км 2 в траве содержалось Ки /кг .

    Накопление радионуклидов травянистыми растениями зависит от особенностей строения дернины. На злаковом лугу с мощной плотной дерниной содержание цезия – 137 в фитомассе в 3 – 4 раза выше, чем на разнотравном с рыхлой маломощной дерниной.

    Культуры с низким содержанием калия меньше накапливают цезия. Злаковые травы накапливают меньше цезия по сравнению с бобовыми. Растения сравнительно устойчивы к радиоактивному воздействию, но они могут накапливать такое количество радионуклидов, что становятся не пригодными к употреблению в пищу человека и на корм скоту.

    Поступление цезия – 137 в растения зависит от типа почвы. По степени уменьшения накопления цезия в урожае растения почвы можно расположить в такой последовательности: дерново-подзолистые супесчаные, дерново-подзолистые суглинистые, серая лесная, чернозёмы и т.д. Накопление радионуклидов в урожае зависит не только от типа почвы, но и от биологической особенности растений.

    Отмечается, что кальциелюбивые растения обычно поглощают больше стронция – 90,чем растения бедные кальцием. Больше всего накапливают стронций – 90 бобовые культуры, меньше корнеплоды и клубнеплоды, и ещё меньше злаковые .

    Накопление радионуклидов в растении зависит от содержания в почве элементов питания. Так установлено, что минеральное удобрение, внесённое в дозах N 90, Р 90, увеличивает концентрацию цезия – 137 в овощных культурах в 3 – 4 раза, а аналогичные внесения калия в 2 – 3 раза снижает его содержание. Положительный эффект на уменьшение поступления стронция – 90 в урожай зернобобовых культур оказывает содержание кальций содержащих веществ. Так, например, внесение в выщелочный чернозём извести в дозах, эквивалентных гидролитической кислотности, уменьшает поступление стронция–90 в зерновые культуры в 1,5 – 3,5 раза.

    Наибольший эффект на снижение поступления стронция – 90 в урожай растений достигает внесением полного минерального удобрения на фоне доломита. На эффективность накопления радионуклидов в урожае растений оказывают влияние органические удобрения и метеорологические условия, а также и время их пребывание в почве. Установлено, что накопление стронция – 90, цезия – 137 через пять лет после их попадания в почву снижается в 3 – 4 раза .

    Таким образом, миграция радионуклидов во многом зависит от типа почвы, её механического состава, водно-физических и агрохимических свойств. Так на сорбцию радиоизотопов влияют многие факторы, и одним из основных являются механический и минералогический состав почвы. Тяжёлыми по механическому составу почвами поглощённые радионуклиды, особенно цезий–137, закрепляются сильнее, чем лёгкими. Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количества осадков).

    Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической способности растений.

    Радиоактивные вещества, попадающие в атмосферу, в конечном счете, концентрируются в почве. Через несколько лет после радиоактивных выпадений на земную поверхность поступления радионуклидов в растения из почвы становится основным путём попадания их в пищу человека и корм животным. При аварийных ситуациях, как показала авария на Чернобыльской АЭС, уже на второй год после выпадений основной путь попадания радиоактивных веществ в пищевые цепи - поступление радионуклидов из почвы в растения.

    Радиоактивные вещества, попадающие в почву, могут из неё частично вымываться и попадать в грунтовые воды. Однако почва довольно прочно удерживает попадающие в неё радиоактивные вещества. Поглощение радионуклидов обуславливает очень длительное (в течение десятилетий) их нахождение в почвенном покрове и непрекращающееся поступления в сельскохозяйственную продукцию. Почва как основной компонент агроценоза оказывает определяющее влияние на интенсивность включения радиоактивных веществ в кормовые и пищевые цепи.

    Поглощение почвами радионуклидов препятствует их передвижению по профилю почв, проникновению в грунтовые воды и в конечном счёте определят их аккумуляцию в верхних почвенных горизонтах.

    Механизм усвоения радионуклидов корнями растений сходен с поглощением основных питательных веществ – макро и микроэлементов. Определённое сходство наблюдается в поглощении растениями и передвижения по ним стронция – 90 и цезия – 137 и их химических аналогов – кальция и калия, поэтому содержание данных радионуклидов в биологических объектах иногда выражают по отношению к их химическим аналогам, в так называемых стронциевых и цезиевых единицах.

    Радионуклиды Ru–106, Ce–144, Co–60 концентрируются преимущественно в корневой системе и в незначительных количествах передвигаются в назёмные органы растений. В отличие от них стронций–90 и цезий–137 в относительно больших количествах накапливаются в наземной части растений .

    Радионуклиды, поступившие в подземную часть растений, в основном концентрируются в соломе (листья и стебли), меньше – в мягкие (колосья, метёлки без зерна. Некоторые исключения из этой из этой закономерности составляет цезий, относительное содержание которого в семенах может достигать 10 % и выше общего количества его в надземной части. Цезий интенсивно передвигается по растению и относительно в больших количествах накапливается в молодых органах, чем очевидно вызвана повышенная концентрация его в зерне .

    В общем, накопление радионуклидов и их содержание на единицу массы сухого вещества в процессе роста растений наблюдается такая же закономерность, как и для биологически важных элементов: с возрастом растений в их надземных органах увеличивается абсолютное количество радионуклидов и снижается содержание на единицу массы сухого вещества. По мере увеличения урожая, как правило, уменьшается содержание радионуклидов на единицу массы.

    Из кислых почв радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых, нейтральных и слабощелочных. В кислых почвах повышается подвижность стронция – 90 и цезия – 137 снижается прочность их растениями. Внесение карбонатов кальция и калия или натрия в кислую дерново-подзолистую почву в количествах, эквивалентных гидролической кислотности, снижает размеры накопления долгоживущих радионуклидов стронция и цезия в урожае.

    Существует тесная обратная зависимость накопления стронция–90 в растениях от содержания в почве обменного кальция (поступление стронция уменьшается с увеличением содержания обменного кальция в почве).

    Следовательно, зависимость поступления стронция–90 и цезия–137 из почвы в растения довольно сложная, и не всегда её можно установить по какому-либо одному из свойств, в разных почвах необходимо учитывать комплекс показателей.

    Пути миграции радионуклидов в организм человека различны. Значительная их доля поступает в организм человека по пищевой цепи: почва – растения – сельскохозяйственные животные – продукция животноводства – человек. В принципе радионуклиды могут поступать в организм животных через органы дыхания, желудочно-кишечный тракт и поверхность кожи. Если в период

    радиоактивных выпадений крупных рогатый скот находится на пастбище, то поступление радионуклидов может составить (в относительных единицах): через пищеварительный канал 1000, органы дыхания 1, кожу 0,0001. Следовательно, в условиях радиоактивных выпадений основное внимание должно быть обращено на максимально возможное снижение поступления радионуклидов в организм сельскохозяйственных животных через желудочно-кишечный тракт.

    Так как радионуклиды, поступая в организм животных и человека, могут накапливаться и, оказывая неблагоприятное воздействие на здоровье и генофонд человека необходимо проводить мероприятия, снижающие поступление радионуклидов в сельскохозяйственные растения, снижение накопления радиоактивных веществ в организмах сельскохозяйственных животных.

    mob_info