Теплоемкость продуктов полного сгорания в стехиометрическом объеме воздуха. Курсовая работа: Расчет установки утилизации теплоты отходящих газов технологической печи Физические свойства дымовых газов таблица

При устройстве печи в идеале хочется иметь такую конструкцию, которая автоматически давала бы столько воздуха, сколько надо для горения. С первого взгляда, это можно сделать с помощью дымовой трубы. Действительно, чем более интенсивно горят дрова, тем больше должно быть горячих дымовых газов, тем больше должна быть и тяга (модель карбюратора). Но это не так. Тяга вовсе не зависит от количества образующихся горячих дымовых газов. Тяга — это перепад давления в трубе от оголовка трубы до топливника. Определяется же она высотой трубы и температурой дымовых газов, а точнее - их плотностью.

Тягу определяют по формуле:

F= A(p в — p д) h

где F - тяга, А - коэффициент, p в - плотность наружного воздуха, p д - плотность дымовых газов, h - высота трубы

Плотность дымовых газов рассчитывают по формуле:

p д = p в (273+t в) / (273+t д)

где t в и t д - температура в градусах Цельсия наружного атмосферного воздуха вне трубы и дымовых газов в трубе.

Скорость движения дымовых газов в трубе (объёмный расход, то есть засасывающая способность трубы) G вовсе не зависит от высоты трубы и определяется разностью температур дымовых газов и наружного воздуха, а также площадью поперечного сечения дымовой трубы. Отсюда следует ряд практических выводов.

Во-первых , дымовые трубы делают высокими вовсе не для того, чтобы повысить расход воздуха через топливник, а только для увеличения тяги (то есть перепада давления в трубе). Это очень важно для предотвращения опрокидывания тяги (дымления печи) при ветровом подпоре (величина тяги должна всегда превышать возможный ветровой подпор).

Во-вторых , регулировать расход воздуха удобно с помощью устройств, изменяющих площадь живого сечения трубы, то есть с помощью задвижек. При увеличении площади поперечного сечения канала дымовой трубы, например, вдвое - можно ожидать примерно двукратного увеличения объёмного расхода воздуха через топливник.

Поясним это простым и наглядным примером. Имеем две одинаковые печи. Объединяем их в одну. Получаем вдвое большую печь с удвоенным количеством горящих дров, с двукратными расходом воздуха и площадью поперечного сечения трубы. Или (что является тем же самым), если в топливнике разгорается всё больше дров, то необходимо всё больше и больше открывать задвижки на трубе.

В-третьих , если печка горит нормально в установившемся режиме, а мы добавочно пустим в топливник поток холодного воздуха мимо горящих дров в трубу, то дымовые газы тотчас охладятся, и расход воздуха через печь сократится. При этом горящие дрова начнут затухать. То есть мы вроде бы непосредственно на дрова не влияем и направляем дополнительный поток мимо дров, а получается так, что труба может пропустить меньше дымовых газов, чем раньше, когда этот дополнительный поток воздуха отсутствовал. Труба сама сократит поток воздуха на дрова, что был ранее, и к тому же не пустит добавочный поток холодного воздуха. Иными словами, дымовая труба запрётся.

Вот почему так вредны подсосы холодного воздуха через щели в дымовых трубах, излишние потоки воздуха в топливнике да и вообще какие-либо теплопотери в дымовой трубе, приводящие к снижению температуры дымовых газов.

В-четвёртых , чем больше коэффициент газодинамического сопротивления дымовой трубы, тем меньше расход воздуха. То есть стенки дымовой трубы желательно выполнять как можно более гладкими, без завихрений и без поворотов.

В-пятых , чем меньше температура дымовых газов, тем более резко изменяется расход воздуха при колебаниях температуры дымовых газов, что и объясняет ситуацию неустойчивости работы трубы при розжиге печи.

В-шестых , при высоких температурах дымовых газов расход воздуха не зависит от температуры дымовых газов. То есть при сильном разгорании печи расход воздуха перестаёт увеличиваться и начинает зависеть только от сечения трубы.

Вопросы неустойчивости возникают не только при анализе тепловых характеристик трубы, но и при рассмотрении динамики газовых потоков в трубе. Действительно, дымовая труба представляет собой колодец, заполненный лёгким дымовым газом. Если этот лёгкий дымовой газ поднимается вверх не очень быстро, то не исключена вероятность того, что тяжёлый внешний воздух может попросту утонуть в лёгком газе и создать падающий нисходящий поток в трубе. Особенно вероятна такая ситуация при холодных стенках дымовой трубы, то есть во время розжига печи.

Рис. 1. Схема движения газов в холодной дымовой трубе: 1 - топливник; 2 - подача воздуха через поддувало; 3-дымовая труба; 4 - задвижка; 5 - каминный зуб; 6-дымовые газы; 7-проваливающийся холодный воздух; 8 - поток воздуха, вызывающий опрокидывание тяги.

а) гладкая открытая вертикальная труба
б) труба с задвижкой и зубом
в) труба с верхней задвижкой

Сплошные стрелки - направления движения лёгких горячих дымовых газов. Пунктирные стрелки - направления движения нисходящих потоков холодного тяжёлого воздуха из атмосферы.

На рис. 1а схематически изображена печь, в которую подаётся воздух 2 и выводятся через дымовую трубу дымовые газы 6. Если поперечное сечение трубы велико (или скорость движения дымовых газов мала), то в результате какой-либо флуктуации в трубу начинает проникать холодный тяжёлый атмосферный воздух 7, достигая даже топливника. Этот падающий поток может заменить «штатный» поток воздуха через поддувало 2. Даже если печь будет заперта на все дверцы и все заслонки воздухозаборных отверстий будут закрыты, то всё равно печь может гореть за счёт поступающего сверху воздуха. Кстати, именно так часто и бывает при догорании углей при закрытых дверях печей. Может даже произойти полное опрокидывание тяги: воздух будет поступать сверху через трубу, а дымовые газы - выходить через дверцу.

В действительности же на внутренней стенке дымовой трубы всегда имеются неровности, наросты, шероховатости, при соударении с которыми дымовые газы и встречные нисходящие холодные воздушные потоки взвихриваются и перемешиваются друг с другом. Холодный нисходящий поток воздуха при этом выталкивается или, нагреваясь, начинает подниматься вверх вперемешку с горячими газами.

Эффект разворачивания нисходящих потоков холодного воздуха вверх усиливается при наличии частично открытых задвижек, а также так называемого зуба, широко применяемого в технологии изготовления каминов (рис. 1б ). Зуб препятствует поступлению холодного воздуха из трубы в каминное пространство и предотвращает тем самым дымление камина.

Нисходящие потоки воздуха в трубе особенно опасны в туманную погоду: дымовые газы не в состоянии испарить мельчайшие капельки воды, охлаждаются, тяга снижается и может даже опрокинуться. Печь при этом сильно дымит, не разгорается.

По той же причине сильно дымят печи с сырыми дымовыми трубами. Для предотвращения возникновения нисходящих потоков особенно эффективны верхние задвижки (рис. 1в ), регулируемые в зависимости от скорости дымовых газов в дымовой трубе. Однако эксплуатация таких задвижек неудобна.

Рис. 2. Зависимость коэффициента избытка воздуха а от времени протопки печи (сплошная кривая). Пунктирная кривая - потребный расход воздуха G потр для полного окисления продуктов сгорания дров (в том числе сажи и летучих веществ) в дымовых газах (в относительных единицах). Штрих-пунктирная кривая - реальный расход воздуха G трубы обеспечиваемый тягой трубы (в относительных единицах). Коэффициент избытка воздуха является частным отделения G трубы на G потр

Устойчивая и достаточно сильная тяга возникает только после прогрева стенок дымовой трубы, на что требуется значительное время, Так что в начале протопки воздуха всегда не хватает. Коэффициент избытка воздуха при этом меньше единицы, и печь дымит (рис. 2 ). И наоборот: по окончании протопки дымовая труба остаётся горячей, тяга долго сохраняется, хотя дрова уже практически сгорели (коэффициент избытка воздуха - больше единицы). Металлические печи с металлическими утеплёнными дымовыми трубами быстрее выходят на режим ввиду малой теплоёмкости по сравнению с кирпичными трубами.

Анализ процессов в дымовой трубе можно продолжить, но уже и так ясно, что как бы ни хороша была сама печь, все её достоинства могут быть сведены к нулю плохой дымовой трубой. Конечно, в идеальном варианте дымовую трубу надо было бы заменить современной системой принудительной вытяжки дымовых газов с помощью электрического вентилятора с регулируемым расходом и с предварительной конденсацией влаги из дымовых газов. Такая система помимо прочего могла бы очищать дымовые газы от сажи, окиси углерода и других вредных примесей, а также охлаждать сбрасываемые дымовые газы и обеспечивать рекуперацию тепла.

Но всё это - в далёкой перспективе. Для дачника и садовода дымовая труба порой и так может стать намного дороже самой печи, особенно в случае отопления многоуровневого дома. Банные дымовые трубы обычно попроще и покороче, но уровень тепловой мощности печи может быть очень большим. Такие трубы, как правило, сильно прогреты по всей длине, из них часто вылетают искры и пепел, но выпадение конденсата и сажи незначительно.

Если вы пока планируете использовать банное здание только как баню, то трубу можно делать и неутеплённой. Если же баня задумывается вами и как место возможного пребывания (временного проживания, ночёвок), особенно зимой, то целесообразнее трубу сразу делать утеплённой, причём качественно, «на всю жизнь». Печки при этом можно менять хоть каждый день, подбирать конструкцию поудачней и по-нужнее, а труба будет одна и та же.

По крайней мере, если печка работает в режиме длительного горения {тления дров), то утепление трубы абсолютно обязательно, поскольку при низких мощностях (1 — 5 кВт) неутеплённая металлическая труба станет совсем холодной, будет обильно течь конденсат, который в самые сильные морозы может даже замёрзнуть и перекрыть льдом трубу. Это особенно опасно при наличии искроуловительной сетки и зонтов с малыми проходными зазорами. Искроуловители целесообразны при интенсивных протопках летом и крайне опасны при слабых режимах горения дров зимой. По причине возможного забивания труб льдом установка дефлекторов и зонтов на печных трубах была запрещена в 1991 году (а на дымоходах газовых печей ещё раньше).

По тем же соображениям не стоит увлекаться высотой трубы - уровень тяги не так уж важен для безоборотной банной печи. Если же она будет поддымливать, всегда можно быстро проветрить помещение. А вот высоту над коньком крыши (не менее 0,5 м) следует соблюсти обязательно для предотвращения опрокидывания тяги при порывах ветра. На пологих же крышах труба должна выступать над снежным покровом. Во всяком случае лучше иметь трубу пониже, но потеплее (чем повыше, но холоднее). Высокие трубы зимой всегда холодные и опасные в эксплуатации.

Холодные дымовые трубы имеют массу недостатков. В то же время неутеплённые, но не очень длинные трубы на металлических печах при растопке прогреваются быстро (много быстрее, чем кирпичные трубы), остаются горячими при энергичной протопке и поэтому в банях (и не только в банях) применяются очень широко, тем более что они относительно дёшевы. Асбоцементные трубы на металлических печах не используют, так как они имеют большой вес, а также разрушаются при перегреве с разлётом осколков.

Рис. 3. Простейшие конструкции металлических дымовых труб: 1 - металлическая круглая дымовая труба; 2 - искроуловитель; 3 - колпак для защиты трубы от атмосферных осадков; 4 - стропила; 5 - обрешётка крыши; 6 -деревянные бруски между стропилами (или балками) для оформления противопожарного проёма (разделки) в крыше или перекрытии (при необходимости); 7 - конёк крыши; 8 - мягкая кровля (рубероид, гидростеклоизол, мягкая черепица, гофрированные картонно-битумные листы и т.п.); 9 - металлический лист для настила крыши и перекрытия проёма (допускается использовать плоский лист ацеида - асбоцементную электроизоляционную доску); 10 - металлическая водоотводная накладка; 11 - асбестовая герметизация зазора (стыка); 12 - металлический колпак-выдра; 13 - потолочные балки (с заполнением пространства утеплителем); 14 - обшивка потолка; 15 - пол чердака (при необходимости); 16 - металлический лист потолочной разделки; 17 - металлические усиливающие уголки; 18 - металлическая крышка потолочной разделки (при необходимости); 19 - утеплитель негорючий термостойкий (керамзит, песок, перлит, минвата); 20 - защитная накладка (металлический лист по слою асбестового картона толщиной 8 мм); 21 - металлический экран трубы.

а) нетеплоизолированная труба;
б) теплоизолированная экранированная труба с сопротивлением теплопередаче не менее 0,3 м 2 -град/Вт (что эквивалентно толщине кирпича 130 мм или толщине утеплителя типа минваты 20 мм).

На рис. 3 представлены типичные монтажные схемы неутеплённых металлических труб. Саму трубу следует приобретать из нержавеющей стали толщиной не менее 0,7 мм. Наиболее ходовой диаметр российской трубы - 120 мм, финской - 115 мм.

По ГОСТ 9817-95 площадь поперечного сечения многооборотной дымовой трубы должна составлять не менее 8 см 2 на 1 кВт номинальной тепловой мощности, выделяющейся в топке при горении дров. Эту мощность не следует путать с тепловой мощностью теплоёмкой печи, выделяющейся с наружной кирпичной поверхности печи в помещение по СНиП 2.04.05-91. Это - одно из многочисленных недоразумений наших нормативных документов. Поскольку теплоёмкие печи обычно топятся лишь 2-3 часа в сутки, то мощность в топке примерно в десять раз больше мощности выделения тепла с поверхности кирпичной печи.

В следующий раз мы поговорим об особенностях монтажа дымовых труб.

2. тепло, уносимое уходящими газами. Определим теплоемкость дымовых газов при tух =8000С;

3. потери тепла через кладку теплопроводностью.

Потери через свод

Толщина свода 0,3 м, материал шамот. Принимаем, что температура внутренней поверхности свода равна температуре газов.

Средняя температура в печи:

По этой температуре выбираем коэффициент теплопроводности шамотного материала:

Таким образом, потери через свод составляют:

где α – коэффициент теплоотдачи от наружной поверхности стен к окружающему воздуху, равный 71,2 кДж/(м2*ч*0С)

Потери через стены. Кладка стен выполнена двухслойной (шамот 345 мм, диатомит 115 мм)

Площадь стен, м2:

Методической зоны

Сварочной зоны

Томильной зоны

Торцевых

Полная площадь стен 162,73 м2

При линейном распределении температуры по толщине стены средняя температура шамота будет равна 5500С, а диатомита 1500С.

Следовательно.

Полные потери через кладку

4. Потери тепла с охлаждающей водой по практическим данным принимаем равным 10% Qх прихода, то есть Qх+Qр

5. Неучтенные потери принимаем в размере 15% Q прихода тепла

Составим уравнение теплового баланса печи

Тепловой баланс печи сведем в табл.1; 2

Таблица 1

Таблица 2

Расход кДж/ч %

Тепло затрачиваемое на нагрев металла

53

тепло уходящих газов

26

потери через кладку

1,9

потери с охлаждающей водой

6,7

неучтенные потери

10,6

Итого:

100

Удельный расход тепла на нагрев 1 кг металла составит


Выбор и расчет горелок

Принимаем, что в печи установлены горелки типа «труба в трубе».

В сварочных зонах 16 штук, в томильной 4шт. общее количество горелок 20шт. Определим расчетное количество воздуха приходящее на одну горелку.

Vв - часовой расход воздуха;

ТВ - 400+273=673 К - температура подогрева воздуха;

N – количество горелок.

Давление воздуха перед горелкой принимаем 2,0 кПа. Следует что, требуемый расход воздуха обеспечивает горелка ДБВ 225.

Определим расчетное количество газа на одну горелку;

VГ =В=2667 часовой расход топлива;

ТГ =50+273=323 К - температура газа;

N – количество горелок.

8. Расчет рекуператора

Для подогрева воздуха проектируем металлический петлевой рекуператор из труб диаметром 57/49,5 мм с коридорным расположением их шагом

Исходные данные для расчета:

Часовой расход топлива В=2667 кДж/ч;

Расход воздуха на 1 м3 топлива Lα = 13,08 м3/м3;

Количество продуктов сгорания от 1 м3 горючего газа Vα =13,89 м3/м3;

Температура подогрева воздуха tв = 4000С;

Температура уходящих газов из печи tух=8000С.

Часовой расход воздуха:

Часовой выход дыма:

Часовое количество дыма, проходящего через рекуператор с учетом потерь дыма на выбивание и через обводной шибер и подсоса воздуха.

Коэффициент m, учитывая потери дыма, принимаем 0,7.

Коэффициент , учитывающий подсос воздуха в боровах, примем 0,1.

Температура дыма перед рекуператором с учетом подсоса воздуха;

где iух – теплосодержание уходящих газов при tух=8000С

Этому теплосодержанию соответствует температура дыма tД=7500С. (см. Рис.67(3))

При сгорании углерода топлива в воздухе іпо уравнению (21C+2102 + 79N2=21C02 + 79N2) на каждый объем С02 в продуктах сгорания приходится 79: 21 =3,76 объема N2.

При сгорании антрацита, тощих каменных углей и других видов топ­лива с высоким содержанием углерода образуются продукты сгорания, близкие по составу к продуктам сгорания углерода. При сгорании водорода по уравнению

42H2+2102+79N2=42H20+79N2

На каждый объем Н20 приходится 79:42 = 1,88 объема азота.

В продуктах сгорания природного, сжиженного и коксового газов, жидкого топлива, дров, торфа, бурого угля, длиннопламенного и газо­вого каменного угля и других видов топлива со значительным содержа­нием водорода в горючей массе образуется большое количество водя­ного пара, иногда превышающее объем С02. Присутствие влаги в топ-

Таблица 36

Теплоемкость, ккал/(мЗ. °С)

Ливе, естественно, повышает содержание водяного пара в продуктах сгорания.

Состав продуктов полного сгорания основных видов топлива в сте — хиометрическом объеме воздуха приведен в табл. 34. Из данных этой таблицы видно, что в продуктах сгорания всех видов топлива содер­жание N2 значительно превышает суммарное содержание C02-f-H20, а в продуктах сгорания углерода оно составляет 79%.

В продуктах сгорания водорода содержится 65% N2, в продуктах сгорания природного и сжиженного газов, бензина, мазута и других ви­дов углеводородного топлива его содержание составляет 70-74%.

Рис. 5. Объемная теплоемкость

Продуктов сгорания

4 - продукты сгорания углерода

5 - продукты сгорания водорода

Среднюю теплоемкость продуктов полного сгорания, не содержащих кислорода, можно подсчитать по формуле

C = 0,01(Cc02C02 + Cso2S02 + C„20H20 + CN2N2) ккал/(м3-°С), (VI. 1)

Где Сс0г, Csо2, СНа0, CNa - объемные теплоемкости двуокиси углеро­да, сернистого газа, водяного пара и азота, а С02, S02, Н20 и N2 - со­держание соответствующих компонентов в продуктах сгорания, % (объемн.).

В соответствии с этим формула (VI. 1) приобретает следующий вид:

C=0,01.(Cc02/?02 + CHj0H20-bCNi! N2) ккал/(м3«°С). (VI.2)

Средняя объемная теплоемкость С02, Н20 и N2 в интервале темпера­тур от 0 до 2500 °С приведена в табл. 36. Кривые, характеризующие из­менение средней объемной теплоемкости этих газов с повышением тем­пературы, показаны на рис. 5.

Из приведенных в табл. 16 данных и кривых, изображенных на рис. 5, видно следующее:

1. Объемная теплоемкость С02 значительно превосходит теплоем­кость Н20, которая, в свою очередь, превышает теплоемкость N2 во всем интервале температур от 0 до 2000 °С.

2. Теплоемкость С02 возрастает с увеличением температуры быстрее, чем теплоемкость Н20, а теплоемкость Н20 быстрее, чем теплоем­кость N2. Однако, несмотря на это, средневзвешенные объемные тепло­емкости продуктов сгорания углерода и водорода в стехиометрическом объеме воздуха мало различаются .

Указанное положение, несколько неожиданное на первый взгляд, обусловлено тем, что в продуктах полного сгорания углерода в воздухе на каждый кубический метр С02, обладающей наиболее высокой объ­емной теплоемкостью, приходится 3,76 м3 N2 с минимальной объемной

Средние объемные теплоемкости продуктов сгорания углерода и водорода в теоретически необходимом количестве воздуха, ккал/(м3-°С)

Теплоемкость продуктов сгорания

Среднее значение теплоемкости продук­тов сгорания углерода и водорода

Отклонения от среднего значения

Процент отклонения ДС 100

Углерода

Водорода

Теплоемкостью, а в продуктах сгорания водорода на каждый кубический метр водяного пара, объемная теплоемкость которого меньше, чем у СОг, но больше, чем у N2, приходится вдвое меньшее количество азота (1,88 м3).

В результате этого средние объемные теплоемкости продуктов сгора­ния углерода и водорода в воздухе выравниваются, как видно из дан­ных табл. 37 и сопоставления кривых 4 и 5 на рис. 5. Различие в сред­невзвешенных теплоємкостях продуктов сгорания углерода и водорода в воздухе не превышает 2%. Естественно, что теплоемкости продуктов сгорания топлива, состоящего в основном из углерода и водорода, в стехиометрическом объеме воздуха лежат в узкой области между кри­выми 4 и 5 (заштриховано на рис. 5)..

Продукты полного сгорания различных видог; топлива в стехиомет­рическом воздухе в интервале температур от 0 до 2100 °С имеют сле­дующую теплоемкость, ккал/(м3>°С):

Колебания в теплоемкости у продуктов сгорания различных видов топлива сравнительно невелики. У твердого топлива с высоким содер­жанием влаги (дрова , торф, бурые угли и т. д.) теплоемкость продук­тов сгорания в том же температурном интервале выше, чем у топлива с малым содержанием влаги (антрацита, каменных углей, мазута, при­родного газа и т. д.). Это объясняется тем, что при сгорании топлива с высоким содержанием влаги в продуктах сгорания повышается содер­жание водяного пара, обладающего более высокой теплоемкостью по сравнению с двухатомным газом - азотом .

В табл. 38 приведены средние объемные теплоемкости продуктов полного сгорания, не разбавленных воздухом, для различных интерва­лов температур.

Таблица 38

Значение средних теплоемкостей не разбавленных воздухом продуктов сго­рании топлива и воздуха в интервале температур от 0 до t °С

Теплоемкость продуктов сгорания, ккал/(мі ■ °С)

Теплоемкость, ккал/(мЗ. °С)

Природных, нефтяных, коксовых газов, жидкого топлива, каменных углей, антрацита

Дров, торфа, бурых углей, генераторного и доменного газов

Доменного газа

Увеличение содержания влаги в топливе повышает теплоемкость продуктов сгорания вследствие повышения содержания в них водяного пара в том же температурном интервале, по сравнению с теплоемко­стью продуктов сгорания топлива с меньшим содержанием влаги, и одновременно с этим понижает температуру горения топлива вследст­вие увеличения объема продуктов сгорания за счет водяного пара.

С повышением содержания влаги в топливе увеличивается объемная теплоемкость продуктов сгорания в заданном температурном интервале и вместе с тем понижается температурный интервал от 0 до £тах вслед­ствие снижения величины <тах. ПОСКОЛЬКУ ТЄПЛОЄМКОСТЬ ГЭЗОВ уМвНЬ — шается с понижением температуры, теплоемкость продуктов сгорания топлива с различной влажностью в интервале температур от нуля до <тах для данного топлива претерпевает незначительные колебания (табл. 39). В соответствии с этим можно принять теплоемкость про­дуктов сгорания всех видов твердого топлива от 0 до tmax равной 0,405, жидкого топлива 0,401, природного, доменного и генераторного газов 0,400 ккал/(м3-°С).

Это позволяет значительно упростить определение калориметриче — ской и расчетной температур горения (по методике, изложенной в гл. VII). Допускаемая при этом погрешность обычно не превышает 1%, или 20°.

Из рассмотрения кривых 4 и 5 на рис. 5 видно, что отношения тепло — емкостей продуктов полного сгорания углерода в стехиометрическом объеме воздуха в интервале температур от 0 до t°С, например от 0 до

Теплоемкость продуктов сгорания от 0 до t’mayL различных видов твердого топлива с содержанием от 0 до 40% влаги, в стехиометрическом объеме воздуха

Низшая теплота

Жаро — производи­

Теплоем­кость про­дуктов го­рения от О

«о’шах ккал/(м» °С)

Сгорания, ккал/кг

Тельность,

T’ °С ‘max- ^

Антрацит донецкий

Полуантрацит егоршинский ПА

Горючая масса

Рабочее топливо

Каменный уголь

Донецкий

Тощий Т, горючая масса

Тощий Т, рабочее топливо

Паровичный жирный, ПЖ

Газовый Г

Длиннопламенный Д

Промпродукт ПП

Кузнецкий

Анжеро-судженский паровичный спекающийся ПС

Ленинский газовый Г

Прокопьевский слабо спекающийся СС

Карагандинский

Паровичный жирный и паровичный спекающийся ПЖ/ПС

Кизеловский паровичный жирный ПЖ

Воркутинский паровичный жирный ПЖ

Г1 кварчельский (ГССР)

Паровичный жириый ПЖ

Промпродукт ПП

Тквибульский (ГССР) газовый Г

Ко. к-Янгакский (КиргССР) газовый Г

Бурый уголь

Челябинский

Богословский

Подмосковный

Кусковой

Фрезерный

200 и от 0 до 2100 °С практически равны отношению теплоємкостей про­дуктов сгорания водорода в тех же температурных интервалах. Указан­ное отношение теплоемкостей С’ остается практически постоянным и для продуктов полного сгорания различных видов топлива в стехиомет — рическом объеме воздуха .

В табл. 40 приведены отношения теплоемкостей продуктов полного сгорания топлива с малым содержанием балласта, переходящего в га­зообразные продукты сгорания (антрацит, кокс, каменные угли, жидкое топливо, природные, нефтяные, коксовые газы и т. д.) в интервале тем­ператур от 0 до t °С и в интервале температур от 0 до 2100 °С. Посколь­ку жаропроизводительность этих видов топлива близка к 2100 °С, ука­занное соотношение теплоемкостей С’ равно отношению теплоемкостей в интервале температур от 0 до t и от 0 до tm&x-

В табл. 40 приведены также значения величины С’, подсчитанные для продуктов сгорания топлива с высоким содержанием балласта, переходящего при сжигании топлива в газообразные продукты сгора­ния, т. е. влаги в твердом топливе, азота и двуокиси углерода в газо­образном. Жаропроизводительность указанных видов топлива (дрова, торф, бурые угли, смешанный генераторный, воздушный и доменный газы) равна 1600-1700 °С.

Таблица 40

Отношения теплоемкостей продуктов сгорания С’ и воздуха К в температурном интервале от 0 до t °С к теплоемкости продуктов сгорания от 0 до (щах

Темпе­ратура

Топливо с пони­женной жаропро — нзводительностью

Темпе­ратура

Топливо с высокой жаропроизводитель — ностью

Топливо с пони­женной жаропроиз — воднтельиостью

Как видно из табл. 40, значения С’ и К мало различаются даже для продуктов сгорания топлива с разным содержанием балласта и жаро — производительностью.

Теплота сгорания. Низшая теплота сго­рания сухого газообразного топлива Qf ко­леблется в широких пределах от 4 до 47 МДж/м3 и зависит от его состава - соот­ношения и качества горючих и негорючих

Компонентов. Наименьшее значение Qf у доменного газа, средний состав которого примерно на 30 % состоит из горючих газов (в основном оксида углерода СО) и примерно на 60 % из негорючего азота N2. Наибольшее

Значение Qf у попутных газов, состав кото­рых отличается повышенным содержанием тяжелых углеводородов. Теплота сгорания природных газов колеблется в узком диапазо­не Qf = 35,5…37,5 МДж/м3.

Низшая теплота сгорания отдельных га­зов, входящих в состав газообразных топлив, приведена в табл. 3.2. О методах определения теплоты сгорания газообразного топлива см. раздел 3.

Плотность. Различают абсолютную и от­носительную плотность газов.

Абсолютная плотность газа рг, кг/м3, - это масса газа, приходящаяся на 1 м3 зани­маемого этим газом объема. При подсчете плотности отдельного газа объем его киломо — ля принимают равным 22,41 м3 (как для иде­ального газа).

Относительная плотность газа Ротн пред­ставляет собой отношение абсолютной плот­ности газа при нормальных условиях и анало­гичной плотности воздуха:

Ротн = Рг / Рв = Рг / 1,293, (6.1)

Где рг, рЕ - соответственно абсолютная плот­ность газа и воздуха при нормальных услови­ях, кг/м3. Относительную плотность газов обычно используют для сопоставления раз­личных газов между собой.

Значения абсолютной и относительной плотности простых газов приведены в табл. 6.1.

Плотность газовой смеси pjM, кг/м3, опре­деляется на основе правила аддитивности, согласно которому свойства газов суммиру­ются соответственно их объемной доле в сме­си:

Где Xj - объемное содержание 7-го газа в топливе, %; (рг) ; - плотность j-го газа, вхо­дящего в состав топлива, кг/м3; п- число отдельных газов в топливе.

Значения плотности газообразных топлив приведены в табл. П.5.

Плотность газов р, кг/м3, в зависимости от температуры и давления можно подсчитать по формуле

Где р0 - плотность газа при нормальных ус­ловиях (Т0 = 273 К и р0 = 101,3 кПа), кг/м3; р и Т- соответственно действительное давле­ние, кПа, и абсолютная температура газа, К.

Практически все виды газообразного топ­лива легче воздуха, поэтому при утечке газ скапливается под перекрытиями. В целях безопасности перед пуском котла обязательно проверяют отсутствие газа в наиболее вероят­ных местах его скопления.

Вязкость газов увеличивается с повыше­нием температуры. Значения коэффициента динамической вязкости р, Па-с, можно под­считать по эмпирическому уравнению Сезер — ленда

Таблица 6.1

Характеристики компонентов газового топлива (при t — О °С чр = 101,3 кПа)

Хими­ческая

Молярная масса М,

Плотность

Объемные концентра­

Наименование газа

Абсолютная

Относительная

Ционные пределы воспламенения газа в смеси с воздухом, %

Горючие газы

Пропилен

Оксид углерода

Сероводород

Негорючие газы

Диоксид углерода

Диоксид серы

Кислород

Воздух атмосфери.

Водяной пар

Где р0- коэффициент динамической вязко­сти газа при нормальных условиях (Г0 = 273 К и р0 — 101,3 кПа), Па-с; Т - абсолютная тем­пература газа, К; С - коэффициент, завися­щий от вида газа, К, принимается по табл. 6.2.

Для смеси газов коэффициент динамиче­ской вязкости приближенно можно опреде­лить по значениям вязкости отдельных ком­понентов:

Где gj- массовая доля j-го газа в топливе, %; Цу- коэффициент динамической вязко­сти j-го компонента, Па-с; п - число отдель­ных газов в топливе.

В практике широко применяется коэффи­циент кинематической вязкости V, м2/с, кото­
рый связан с динамической вязкостью р через плотность р зависимостью

V = р/р. (6.6)

С учетом (6.4) и (6.6) коэффициент кине­матической вязкости v, м2/с, в зависимости от давления и температуры можно подсчитать по формуле

Где v0- коэффициент кинематической вяз­кости газа при нормальных условиях (Го = 273 К и р0= 101,3 кПа), м2/с; р и Г- соответственно действительное давление, кПа, и абсолютная температура газа, К; С - коэффициент, зависящий от вида газа, К, принимается по табл. 6.2.

Значения коэффициентов кинематической вязкости для газообразных топлив приведены в табл. П.9.

Таблица 6.2

Коэффициенты вязкости и теплопроводности компонентов газового топлива

(при t = 0 °С ир = 101,3 кПа)

Наименование газа

Коэффициент вязкости

Коэффициент теплопроводности ЫО3, Вт/(м-К)

Коэффициент Сезерленда С, К

Динамический р-106, Па-с

Кинематический v-106, м2/с

Горючие газы

Пропилен

Оксид углерода

Сероводород

Негорючие газы

Диоксид углерода

Кислород

Воздух атмосферный

Водяной пар при 100 °С

Теплопроводность. Молекулярный пере­нос энергии в газах характеризуется коэффи­циентом теплопроводности ‘к, Вт/(м-К). Ко­эффициент теплопроводности обратно про­порционален давлению и увеличивается с по­вышением температуры. Значения коэффици­ента X можно подсчитать по формуле Сезерленда

Где Х,0 - коэффициент теплопроводности газа при нормальных условиях (Г0 = 273 К и Ро = 101,3 кПа), Вт/(м-К); р и Т- соответст­венно действительное давление, кПа, и абсо­лютная температура газа, К; С - коэффици­ент, зависящий от вида газа, К, принимается по табл. 6.2.

Значения коэффициентов теплопроводно­сти для газообразных топлив приведены в табл. П.9.

Теплоемкость газообразного топлива отнесенная на 1 м3 сухого газа, зависит от его состава и в общем виде определяется как

4Л=0 ,01(СН2Н2+Ссос0 +

ССН4СН4 +сСо2сОг +- + сх. Х;), (6.9) где сН2,сС0,сСщ, сС02,…, сх. - теплоем­кости составляющих компонентов топлива, соответственно водорода, оксида углерода, метана, диоксида углерода и /-го компонента, кДж/(м3-К); Н2, СО, СН4, С02, …, Хг--

Теплоемкости горючих составляющих га­зообразного топлива приведены в табл. П.6, негорючих - в табл. П.7.

Теплоемкость влажного газообразного то­плива

Сггтл, кДж/(м3-К), определяется как

<тл = ctrn + 0,00124cHzq йтля, (6.10) где drTn- влагосодержание газообразного топлива,

Взрываемость. Смесь горючего газа с воздухом в определенных пропорциях при наличии огня или даже искры может взо­рваться, т. е. происходит процесс его воспла­менения и сгорания со скоростью, близкой к скорости распространения звука. Взрыво­опасные концентрации горючего газа в возду­хе зависят от химического состава и свойств газа. Объемные концентрационные пределы воспламенения для отдельных горючих газов в смеси с воздухом приведены ранее в табл. 6.1. Наиболее широкими пределами воспламенения обладают водород (4.. .74% по объему) и оксид углерода (12,5…74 %). Для природного газа усредненные нижний и верхний пределы воспламенения составляют по объему соответственно 4,5 и 17 %; для коксового - 5,6 и 31 %; для доменного - 35 и 74 %.

Токсичность. Под токсичностью пони­мают способность газа вызывать отравление живых организмов. Степень токсичности за­висит от вида газа и его концентрации. Наи­более опасными в этом отношении компонен­тами газа являются оксид углерода СО и се­роводород H2S.

Токсичность газовых смесей в основном определяется концентрацией наиболее ток­сичного из присутствующих в смеси компо­нентов, при этом его вредное воздействие, как правило, заметно усиливается в присутствии других вредных газов.

Наличие и концентрацию в воздухе вред­ных газов можно определить специальным прибором - газоанализатором.

Почти все природные газы не имеют запа­ха. Для обнаружения утечки газа и принятия мер безопасности природный газ до поступ­ления в магистраль одорируют, т. е. насыща­ют веществом, имеющим резкий запах (на­пример, меркаптанами).

Теплота сгорания различных видов топли­ва колеблется в широких пределах. Для мазу­та, например, она составляет свыше 40 МДж/кг, а для доменного газа и некоторых марок горючего сланца - около 4 МДж/кг. Состав энергетических топлив также изменя­ется в широких пределах. Таким образом, од­ни и те же качественные характеристики в зависимости от вида и марки топлива могут резко отличаться между собой количественно.

Приведенные характеристики топлива. Для сопоставительного анализа в роли харак­теристик, обобщающих качество топлива, ис­пользуют приведенные характеристики топ­лива, %-кг/МДж, которые в общем виде рассчитывают по формуле

Где хг - показатель качества рабочего топ­лива, %; Q[ - удельная теплота сгорания (низшая), МДж/кг.

Так, например, для расчета приведенной

Влажности зольности серы S„p и

Азота N^p (для рабочего состояния топлива)

Формула (7.1) приобретает следующий вид, %-кг/МДж:

TOC o "1-3" h z KP=Kl GT; (7.2)

4ф=л7е[; (7.3)

Snp =S’/ Єї; (7.4)

^p=N7 Q[. (7.5)

В качестве наглядного примера показа­тельно следующее сопоставление при условии сжигания различных топлив в котлах одина­ковой тепловой мощности. Так, сравнение приведенной влажности подмосковного угля

Марки 2Б (WЈp = 3,72 %-кг/МДж) и назаров-

Ского угля 2Б (W^p = 3,04 %-кг/МДж) показы­вает, что в первом случае количество влаги, внесенной в топку котла с топливом, будет примерно в 1,2 раза больше, чем во втором, несмотря на то, что рабочая влажность у под­московного угля (W[ = 31 %) меньше, чем у

Назаровского угля (Wf= 39 %).

Условное топливо. В энергетике для сравнения эффективности использования топ­лива в различных котельных установках, для планирования добычи и потребления топлива в экономических расчетах введено понятие условного топлива. В качестве условного топ­лива принято такое топливо, удельная теплота сгорания (низшая) которого в рабочем со­стоянии равна Qy T = 29300 кДж/кг (или

7000 ккал/кг).

Для каждого натурального топлива имеет­ся так называемый безразмерный тепловой эквивалент Э, который может быть больше или меньше единицы:

mob_info