Свет и цвет в среде. Свет и цвет: основы основ. Свет и цвет в природе

Возможность разложения света была впервые обнаружена Исааком Ньютоном. Узкий луч света, пропущенный им через стеклянную призму, преломился и образовал на стене разноцветную полоску — спектр.

По цветовым признакам спектр можно разделить на две части. В одну часть входят красные, оранжевые, желтые и желто-зеленые цвета, в другую — зеленые, голубые, синие и фиолетовые.

Длина волн лучей видимого спектра различна — от 380 до 760 ммк . За пределами видимой части спектра располагается невидимая его часть. Участки спектра с длиной волны более 780 ммк называются инфракрасными, или тепловыми. Они легко обнаруживаются термометром, установленным на этом участке спектра. Участки спектра с длиной волны менее 380 ммк называются ультрафиолетовыми (рис. 1—см. приложение). Эти лучи активны и отрицательно влияют на светопрочность некоторых пигментов и устойчивость лакокрасочных пленок.

Рис. 1. Спектральное разложение цветового луча


Световые лучи, исходящие от разных источников света, имеют неодинаковый спектральный состав и поэтому значительно отличаются по цвету. Свет обычной электрической лампочки желтее солнечного света, а свет стеариновой или парафиновой свечи или керосиновой лампы желтее света электрической лампочки. Объясняется это тем, что в спектре луча дневного света преобладают волны, соответствующие синему цвету, а в спектре луча от электрической лампочки с вольфрамовой и особенно с угольной нитью — красные и оранжевые цветовые волны. Поэтому один и тот же предмет может принимать различную окраску в зависимости от того, каким источником света он освещен.

Вследствие этого и окраска комнаты и предметов, находящихся в ней, принимают при естественном и искусственном освещении различные цветовые оттенки. Поэтому, подбирая красочные составы для окраски, необходимо учитывать условия освещения во время эксплуатации.

Цвет каждого предмета зависит от его физических свойств, то есть способности отражать, поглощать или пропускать лучи света. Поэтому лучи света, падающие на поверхность, делятся на отраженные, поглощенные и пропущенные.

Тела, почти полностью отражающие или поглощающие лучи света, воспринимаются как непрозрачные.

Тела, пропускающие значительное количество света, воспринимаются как прозрачные (стекло).

Если поверхность или тело отражают или пропускают в одинаковой степени все лучи видимой части спектра, то такое отражение или проникание светового потока называется неизбирательным.

Так, предмет кажется черным, если он поглощает в равной степени почти все лучи спектра, и белым, если он их полностью отражает.

Если смотреть на предметы через бесцветное стекло, мы увидим их настоящий цвет. Следовательно, бесцветное стекло почти полностью пропускает все цветовые лучи спектра, кроме незначительного количества отраженного и поглощенного света, также состоящего из всех цветовых лучей спектра.

Если же заменить бесцветное стекло синим, то все предметы за стеклом покажутся синими, так как синее стекло пропускает в основном синие лучи спектра, а лучи остальных цветов почти полностью поглощает.

Цвет непрозрачного предмета также зависит от отражения и поглощения им волн различного спектрального состава. Так, предмет кажется синим, если он отражает только синие лучи, а все остальные поглощает. Если предмет отражает красные и поглощает все остальные лучи спектра, он кажется красным.

Такое проникание цветовых лучей и поглощение их предметами называется избирательным.

Ахроматические и хроматические цветовые тона. Существующие в природе цвета по цветовым свойствам можно разделить на две группы: ахроматические, или бесцветные, и хроматические, или цветные.

К ахроматическим цветовым тонам относятся белый, черный и ряд промежуточных серых цветов.

Группа хроматических цветовых тонов состоит из красных, оранжевых, желтых, зеленых, синих, фиолетовых и бесчисленного множества промежуточных цветов.

Луч света от предметов, окрашенных в ахроматические цвета, отражается, не претерпев каких-либо заметных изменений. Поэтому эти цвета воспринимаются нами только как белые или черные с целым рядом промежуточных серых оттенков.

Цвет в этом случае зависит исключительно от способности тела поглощать или отражать все лучи спектра. Чем большее количество света отражает предмет, тем он кажется белее. Чем большее количество света предмет поглощает, тем он кажется чернее.

В природе не существует материала, отражающего или поглощающего 100% падающего на него света, поэтому нет ни идеально белого, ни идеально черного цвета. Самый белый цвет имеет порошок химически чистого сернокислого бария, спрессованный в плитку, который отражает 94% падающего на него света. Цинковые белила несколько темнее сернокислого бария, еще темнее свинцовые белила, гипс, литопонные белила, писчая бумага высшего сорта, мел и т. д. Наиболее темной является поверхность черного бархата, отражающая около 0,2% света. Таким образом, можно сделать вывод, что ахроматические цвета отличаются друг от друга только светлотой.

Человеческий глаз различает около 300 оттенков ахроматических цветов.

Хроматические цвета обладают тремя свойствами: цветовым тоном, светлотой и насыщенностью цвета.

Цветовым тоном называется свойство цвета, которое позволяет глазу человека воспринимать и определять красный, желтый, синий и другие спектральные цвета. Цветовых тонов значительно больше, чем названий для них. Основным, естественным рядом цветовых тонов является солнечный спектр, в котором цветовые тона располагаются так, что постепенно и непрерывно переходят один в другой; красный через оранжевый переходит в желтый, далее через светло-зеленый и темно-зеленый — в голубой, затем в синий и, наконец, в фиолетовый.

Светлота — это способность цветной поверхности отражать большее или меньшее количество падающих лучей света. При большем отражении света цвет поверхности кажется светлее, при меньшем — темнее. Это свойство— общее для всех цветов как хроматических, так и ахроматических, поэтому по светлоте можно сравнивать любые цвета. К хроматическому цвету любой светлоты легко подобрать подобный ему по светлоте ахроматический цвет.

Для практических целей при определении светлоты пользуются так называемой серой шкалой, которая состоит из набора выкрасок 1 ахроматических цветов, постепенно переходящих от наиболее черного, темно-серого, серого и светло-серого к почти белому. Эти выкраски наклеены между отверстиями в картоне, против каждой выкраски обозначен коэффициент отражения данного цвета. Шкалу накладывают на исследуемую поверхность и, сопоставляя ее с выкраской, просматриваемой через отверстия шкалы, определяют светлоту.

Насыщенностью хроматического цвета называют способность его сохранять свой цветовой тон при введении в его состав различных количеств серого ахроматического цвета, равного ему по светлоте.

Насыщенность различных цветовых тонов не одинакова. Если какой-либо спектральный цвет, допустим желтый, смешать со светло-серым, равным ему по светлоте, то насыщенность цветового тона несколько уменьшится, он станет бледнее, или менее насыщенным. Добавляя и дальше к желтому цвету светло-серый, мы будем получать все менее насыщенные тона, причем при большом количестве серого цвета желтый оттенок станет едва заметным.

Если понадобится получить менее насыщенный синий цвет, нужно будет ввести большее количество серого цвета, равного по светлоте синему, чем в опыте с желтым цветом, так как насыщенность спектрального синего цвета больше, чем спектрального желтого.

Чистотой цветового тона называется изменение яркости цвета под влиянием большего или меньшего количества ахроматического света (от черного до белого). Чистота цветового тона имеет большое значение при выборе цвета для окраски поверхностей.

Смешение цветов. Восприятие цветов, которые мы видим вокруг себя, вызывается действием на глаз сложного цветового потока, состоящего из световых волн различной длины. Но мы не получаем впечатления пестроты и многоцветности, так как глаз обладает свойством смешивать разнообразные цвета.

Для изучения законов смешения цветов пользуются приборами, дающими возможность смешивать цвета в различной пропорции.

С помощью трех проекционных фонарей с лампами достаточной мощности и трех светофильтров — синего, зеленого и красного — можно получить различные смешанные цвета. Для этого перед объективом каждого фонаря устанавливают светофильтры и направляют цветовые пучки на белый экран. При попарном наложении цветовых пучков на один и тот же участок получают три разнообразных цвета: сочетание синего и зеленого дает голубое пятно, зеленого и красного — желтое, красного и синего— пурпурное. Если же направить на один участок все три цветовые пучка так, чтобы они взаимно перекрывались, то при соответствующей регулировке интенсивности световых пучков с помощью диафрагм или серых светофильтров можно получить белое пятно.

Простой прибор для смешивания цветов — вертушка-юла. Два бумажных кружка разного цвета, но одинакового диаметра, разрезанные по радиусу, вставляют один в другой. При этом образуется двухцветный диск, в котором, перемещая взаимное положение кружков, можно изменять величину цветных секторов. Собранный диск надевают на ось вертушки и приводят в движение. От быстрого чередования цвет двух секторов сливается в один, создавая впечатление одноцветного кружка. В лабораторных условиях обычно пользуются вертушкой с электродвигателем, имеющим не менее 2000 об/мин .

С помощью вертушки можно получить смешение нескольких цветовых тонов, совмещая при этом одновременно соответствующее количество разноцветных дисков

Широко применяют пространственное смешение цветов. Близко расположенные друг к другу цвета, рассматриваемые с большого расстояния, как бы сливаются и да ют смешанный цветовой тон.

На принципе пространственного смешения цветов основана мозаичная монументальная живопись, в которой рисунок набран из отдельных мелких частиц разноцветных минералов или стекла, дающих на расстоянии смешанные цвета. На этом же принципе построено применение при отделочных работах накатывания разноцветных рисунков по цветному фону и т. д.

Перечисленные способы смешения цветов являются оптическими, так как цвета складываются или сливаются в один суммарный цвет на сетчатке нашего глаза. Этот вид смешения цветов называется слагательным, или аддитивным.

Но не всегда при смешении двух хроматических цветов получается смешанный хроматический цвет. В отдельных случаях, если один из хроматических цветов дополнить специально подобранным к нему другим хроматическим цветом и смешать их в строго определенной пропорции, может получиться ахроматический цвет. При этом если были использованы хроматические цвета, близкие по чистоте цветового тона к спектральным, получится белый или светло-серый цвет. Если пропорциональность при смешении нарушена, цветовой тон окажется того цвета, которого было взято больше, причем насыщенность тона понизится.

Два хроматических цвета, образующие при смешении в определенной пропорции ахроматический цвет, называются взаимнодополнительными. Смешение взаимнодополнительных цветов никогда не может дать нового цветового тона. В природе существует множество пар взаимнодополнительных цветов, но для практических целей из основных пар взаимнодополнительных цветов создают цветовой круг из восьми цветов, в котором взаимнодополнительные цвета размещают на противоположных концах одного диаметра (рис. 2 — см. приложение).

Рис. 2. Цветовой круг взаимнодополнительных цветов: 1 — большой интервал, 2 — средний интервал, 3 — малый интервал


В этом круге взаимнодополнительный цвет к красному— голубовато-зеленый, к оранжевому — голубой, к желтому — синий, к желто-зеленому — фиолетовый. В любой паре взаимнодополнительных цветов один всегда принадлежит к группе теплых, другой — к группе холодных тонов.

Помимо слагательного смешения, существует вычитательное смешение цветов, которое состоит в механическом смешении красок непосредственно на палитре, красочных составов в емкостях или же нанесении двух красочных прозрачных слоев друг на друга (лессировка).

При механическом смешении красок получается не оптическое сложение цветных лучей на сетчатке глаза, а вычитание из белого луча, освещающего нашу цветную смесь, тех лучей, которые поглощаются цветными частицами красок. Так, например, при освещении белым лучом света предмета, окрашенного цветной смесью пигментов синего и желтого цвета (берлинская лазурь и желтый кадмий), синие частицы берлинской лазури поглотят красные, оранжевые и желтые лучи, а желтые частицы кадмия — фиолетовые, синие и голубые лучи. Непоглощенными останутся зеленые и близкие к ним голубовато-зеленые и желто-зеленые лучи, которые, отразившись от предмета, и будут восприняты сетчаткой нашего глаза.

Примером вычитательного смешения цветов может служить луч света, пропущенный через три стекла — желтого, голубого и пурпурного цветов, которые поставлены одно за другим и направлены на белый экран. В местах перекрытия двух стекол — пурпурного и желтого — получится красное пятно, желтого и голубого — зеленое, голубого и пурпурного — синее. В местах одновременного перекрытия трех цветов появится черное пятно.

Количественная оценка цвета. Для цветового тона, чистоты цвета и отражения цветом света установлены количественные оценки.

Цветовой тон, обозначаемый греческой буквой X , определяется длиной его волны и лежит в пределах от 380 до 780 ммк .

Степень разбавления спектрального цвета, или чистота цвета, обозначается буквой Р . Чистый спектральный цвет имеет чистоту, равную единице. Чистота разбавленных цветов меньше единицы. Например, светло-оранжевый цвет определяется такими цифровыми характеристиками:

λ=600 ммк; Р = 0,4.

В 1931 году Международная комиссия рассмотрела и утвердила систему графического определения цвета, действующую и в настоящее время. Эта система построена в прямоугольных координатах на основе трех основных цветов — красного, зеленого и синего.

На рис. 3, а представлен Международный цветовой график, на котором нанесена кривая спектральных цветов с длиной волны λ = 400—700 ммк . В середине расположен белый цвет. Помимо основной кривой, на графике нанесены девять дополнительных кривых, определяющих чистоту каждого спектрального цвета, которая устанавливается проведением прямой от чистого спектрального цвета к белому. Дополнительные кривые линии имеютцифровые обозначения, по которым определяется чистота цвета. Первая кривая, расположенная у белого цвета, имеет цифровое обозначение 10. Это значит, что чистота спектрального цвета равна 10%. Последняя дополнительная кривая имеет цифровое обозначение 90, значит, чистота спектральных цветов, расположенных на этой кривой, равна 90%.

На графике размещены и пурпурные цвета, отсутствующие в спектре, которые являются результатом смешения спектральных фиолетового и красного цветов. Они имеют длину волны с цифровыми обозначениями, имеющими штрих.

Для определения цвета, цифровая характеристика которого известна (например, λ = 592 ммк, P = 48%), находим на кривой графика цвет, имеющий длину волны λ = 592 ммк , проводим прямую от найденной точки на кривой к точке Е , и в месте пересечения прямой с дополнительной кривой, имеющей отметку 48, ставим точку, которая и определяет цвет, имеющий данные цифровые обозначения.

Если нам известны значения коэффициентов по осям X и У , например по оси X 0,3 и У 0,4, находим по оси абсцисс значение K = 0,3, а по оси ординат — K = 0,4. Устанавливаем, что указанным значениям коэффициентов соответствует холодный зеленый цвет с длиной волны λ = 520 ммк и чистотой цвета P = 30%.

С помощью графика возможно определение и взаимнодополнительных цветов, которые располагаются на прямой, пересекающей весь график и проходящей через точку Е . Допустим, необходимо определить дополнительный цвет к оранжевому с длиной волны λ=600 ммк . Проводя прямую от данной точки на кривой через точку Е , пересечем кривую с противоположной стороны. Место пересечения окажется на отметке 490, которая обозначает темно-голубой цвет с длиной волны λ = 490 ммк .

На рис. 3, а (см. приложение) представлен тот же график, что и на рис. 3, но выполненный в цвете.

Рис. 3 Международный цветовой график (черно-белый)

Рис. 3. Международный цветовой график (цветной)


Третья количественная оценка цвета — коэффициент отражения цветом света, который условно обозначается греческой буквой ρ. Он всегда меньше единицы Коэффициенты отражения окрашенных или облицованных различными материалами поверхностей оказывают огромное влияние на освещенность помещений и всегда принимаются во внимание при проектировании отделки зданий различного назначения. Следует учитывать, что с увеличением чистоты цвета коэффициент отражения уменьшается и, наоборот, с потерей цветом чистоты и приближением его к белому коэффициент отражения увеличивается. Коэффициент отражения света поверхностями и материалами зависит от их цвета:

Поверхности, окрашенные в цвета (ρ, % ):

белый...... 65—80

кремовый...... 55—70

соломенно-желтый.55—70

желтый...... 45—60

темно-зеленый...... 10—30

светло-голубой...... 20—50

голубой...... 10—25

темно-голубой...... 5—15

черный...... 3—10

Поверхности, облицованные (ρ, % )

мрамором белым...... 80

кирпичом белым...... 62

» желтым...... 45

» красным...... 20

черепицей...... 10—15

асфальтом...... 8—12

Отдельные виды материалов (ρ, % ):

белила цинковые чистые...... 76

литопон чистый...... 75

бумага слегка желтоватая...... 67

известь гашеная...... 66,5

Поверхности, оклеенные обоями (ρ, % ):

светло-серыми, песочными, желтыми, розовыми, бледно-голубыми..... 45—65

темными различных цветов...... 45


При окраске и облицовке поверхностей обычно применяют цвета, отражающие свет в следующих процентах: на потолках — 70—85, на стенах (верхняя часть)—60— 80, на панелях — 50—65; цвет мебели и оборудования — 50—65; полов — 30—50. Матовые окраски облицовки с диффузным (рассеянным) отражением света создают условия наиболее равномерного (без бликов) освещения, что обеспечивает нормальные условия для органов зрения.

1 Выкрасками называют небольшие окрашенные площади, которые служат образцами

Видимый свет - лишь небольшой участок спектра электромагнитного излучения. Помимо него, в этот спектр входят радио- и микроволны, инфракрасное и ультрафиолетовое излучение, а также рентгеновские и гамма-лучи. И только видимый спектр улавливается нашими глазами, лишь его мы интерпретируем как цвета!

В действительности же синий цвет отличается от, например, красного исключительно частотой колебаний электромагнитных волн. В то же время радиоволны имеют слишком малую частоту, чтобы мы могли их увидеть, а гамма-лучи - слишком большую. С основами разобрались. А теперь позвольте представить вашему вниманию любопытные факты о свете и различных цветах и отенках в природе.

Спектр видимого света


Проходя через призму, белый свет «расщепляется» и образует спектр

По сути, свет - это невидимая энергия, которая путешествует в пространстве с огромной скоростью - 300 тысяч километров в секунду. Чтобы мы смогли его увидеть, свет должен пройти через мельчайшие частички пыли, дыма либо водяного пара (облаков или тумана). Помимо этого, наше зрение может уловить лучи света, если они падают на какой-либо твёрдый предмет (на одежду, стену, дерево или даже Луну), отражаются от него и попадают на нашу сетчатку.

Исаак Ньютон впервые заметил, что при прохождении через призму световой луч преломляется, образуя спектр цветов, которые всегда располагаются в одинаковом порядке: от красного до фиолетового.

Сетчатка нашего глаза состоит из двух типов чувствительных к свету клеток, их называют палочками и колбочками. Палочки ответственны за определение интенсивности и яркости света, в то время как колбочки воспринимают цвет и резкость. Колбочки, в свою очередь, разделяются ещё на три типа. Каждый из них имеет максимальную чувствительность к красному, зелёному или синему участку спектра. Эти цвета считаются основными; а при их сочетании образуются вторичные, такие как жёлтый, голубой или фиолетовый. По аналогичному принципу происходит формирование тысяч других оттенков, которые мы видим ежедневно.


Свет и тьма


Свет и тьма неразделимы

В конце XVIII века немецкий учёный Иоганн Вольфганг фон Гёте выяснил, что если смотреть через призму на тёмный предмет, расположенный на светлом фоне, то вокруг него будет наблюдаться цветное свечение. Его правая половина представляет собой переходы между белым, жёлтым, красным и чёрным цветами, левая - между синим, голубым, белым и чёрным. При наложении этих двух участков друг на друга формируется перевёрнутый спектр.

Цвет - такой себе контраст между тёмным и светлым. На одной стороне спектра мы наблюдаем тёплые оттенки (жёлтый и красный, которые переходят в чёрный и белый), на другой - наоборот, холодные (голубой и синий, сменяющиеся сначала белым, а затем чёрным).

Вы, наверное, не раз замечали, что опускающееся за горизонт солнце окрашивается в красноватый оттенок, а цвет неба меняется с синего на оранжевый. Эти изменения обусловлены тем, что когда наше светило находится низко над горизонтом, его лучи проходят через более плотные атмосферные слои. Когда яркий свет затемняется, проходя через среду с высокой оптической плотностью, мы воспринимаем его как красный.

Если же смотреть в противоположную сторону, вы заметите, что голубое небо приобретает тёмно-синий или даже фиолетовый цвет. Эти тона по отношению к красному находятся на противоположном конце спектра.

Цветные тени


На самом деле все тени одинаковые — серые!

Если днем смотреть на окно на протяжении нескольких секунд, а затем закрыть глаза, вы ненадолго увидите его негативное изображение - светлую раму и темную середину. С другими ярко освещёнными цветными предметами дела обстоят аналогично. У каждого цвета есть свой «негативный» оттенок: у красного - голубой, у зелёного - пурпурный, у синего - жёлтый. Когда вы закрываете глаза, перед ними вместо света «возникает» темнота. Послеобраз изображений, которые вы видели, остаётся, но цвета сменяются противоположными.

Если направить на вазу два разных источника света, находящиеся поблизости друг от друга, она будет отбрасывать две тени. Если один источник будет излучать синий цвет, тень от него будет также казаться синей, а другая - жёлтой. На самом деле, обе тени одинаковые, серые. То, что они нам кажутся разными - следствие оптической иллюзии.

Какой цвет на самом деле имеют предметы?


У предметов нет такой постоянной характеристики, как цвет

Видимый нами цвет предметов определяется условиями освещения. Допустим, у вас есть зеленая футболка. По крайней мере, при дневном свете она вам кажется зеленой. Но что будет, если вы, например, попадёте в помещение с красным освещением? Какой цвет будет у неё тогда? Казалось бы, при слиянии красного и зелёного получается жёлтый, но в этом случае необходимо уточнение. Мы имеет красное освещение и зелёный краситель на вашей футболке. Забавно, но зелёный краситель является продуктом смешивания синего пигмента с жёлтым. А они красный цвет не отражают. Поэтому ваша футболка будет казаться черной! В неосвещённом помещении вы, посмотрев на неё, также увидите чёрный цвет. В принципе, вся комната будет вам казаться чёрной просто потому, что находящиеся в ней предметы не освещаются.

Перейдём к другому примеру. Для начала попробуйте ответить на вопрос: «Какой цвет на самом деле имеет банан?». Казалось бы, вопроса проще не придумаешь. Но задумайтесь о том, что когда банан освещается белым светом, включающим в себя все цвета видимого нами спектра, вы видите жёлтый просто потому, что он отражается, в то время как все остальные оттенки поглощаются поверхностью фрукта. То есть банан может иметь любой цвет, но точно не жёлтый. Более того, чисто теоретически банан синий, потому что этот цвет является «противоположным» жёлтому!

Трудно осознать, что предметы, по сути, не имеют такой характеристики, как цвет. А всё многообразие оттенков, которые мы наблюдаем - это просто интерпретация электромагнитного излучения нашим мозгом.

Розовый не существует!


Основные цвета чередуются с дополнительными

Посмотрите на цветовой круг. Вы увидите, что дополнительные цвета в нём чередуются с основными. Более того, любой дополнительный оттенок образуется при смешении соседствующих с ним основных цветов. Жёлтый представляет собой итог слияния красного и зелёного, голубой - это зелёный плюс синий, а розовый - синий плюс красный.

В то же время в радуге розовый цвет отсутствует! А знаете, почему? Дело в том, что его просто не существует в природе! Жёлтый есть, голубой есть, а розового нет, так как красный и синий цвета расположены на противоположных концах видимого нами спектра. Поэтому они не могут пересекаться. Розовый цвет - олицетворение всего того, что мы не можем увидеть в этом мире.

Вантаблэк


Невероятно, но этот чёрный предмет на самом деле объёмный!

Девушки знают, что одежда чёрного цвета помогает им выглядеть более стройными и придаёт их образу элегантность и утончённость. Но слышали ли вы о вантаблэке - субстанции из углеродных нанотрубок, являющейся самым чёрным веществом, известным науке? Возможно, это звучит странно, но вантаблэк почти невозможно увидеть, ведь он поглощает не более 0,035% падающего на него света.


Английские учёные создали вантаблэк в июле 2014 года. Это вещество имеет множество потенциальных сфер применения. Так, его планируют использовать при создании сверхчувствительных телескопов или самолётов-невидимок. Интересен вантаблэк и скульптору Анишу Капуру, считающему, что это вещество будет смотреться очень эффектно, если его применить в роли краски для изображения бездонного космического пространства.

Люди видят оттенки по-разному


Дальтоникам красный цвет может казаться синим или зелёным

Знаете ли вы, что красное платье вон на той симпатичной девушке может казаться кому-то синим или, например, зелёным? И кто же из них прав?

В мире есть миллионы людей, видящих мир в других красках из-за заболевания, называемого дальтонизмом. Некоторые дальтоники не различают красный цвет, другие - синий или зелёный.


Запрещенные цвета


Интересно, зачем Беларусь и Украина использовали запрещённые сочетания цветов для создания своих флагов? :)

Красный, жёлтый, зелёный и синий цвета в различных сочетаниях помогут описать все остальные оттенки видимого спектра. К примеру, фиолетовый можно назвать красно-синим, салатовый - жёлто-зеленым, оранжевый - красно-желтым, а бирюзовый - зелено-голубым. Но как бы вы назвали красно-зеленый или сине-желтый цвет, только не смешанный, а состоящий одновременно из двух тонов, компенсирующих друг друга в наших глазах? Наверное, никак, ведь таких оттенков попросту не существует. Кстати, их ещё называют «запрещёнными».

Как мы воспринимаем цвета? Колбочки в нашей сетчатке различают красный, зелёный и синий тона по длине волн, которые в некоторых случаях могут пересекаться. То есть когда «зелёные» волны накладываются на «красные», человек может видеть или жёлтый, или зелёный, или красный цвет. Всё определяется незначительными различиями в длине волн. Но цвет не бывает одновременно зелёным и красным или, например, синим и жёлтым.

В 1983 году английские учёные Хьюит Крэйн и Томас Пиантанида сделали, казалось бы, невозможное! После сотен неудачных попыток они сумели воссоздать те самые безымянные цвета. Учёные сделали изображения, состоявшие из чередующихся красных и зелёных полос (а также из жёлтых и синих).


Как в природе видят животные


Собаки не видят красный цвет

Наверное, вы не раз слышали, что все собаки - дальтоники. Но это утверждение не совсем верное. В сетчатке человека присутствуют три типа колбочек, а у собак их на один меньше. Поэтому в мире, который они видят, нет места для красного цвета.


Человеческое тело излучает свет


Тело человека на самом деле светится, пускай и очень слабо

Ученые из университета Киото выяснили, что люди излучают свет. Правда, он в 1000 раз менее мощный, нежели тот, который мы можем увидеть невооружённым глазом. Они объясняют это наличием побочных продуктов нашего обмена вещества - свободных радикалов, излучающих энергию. Также исследователи сделали вывод, что пик человеческого свечения приходится примерно в 16-00.

Даже люди с очень богатым воображением не могут представить себе какие-то «несуществующие» цвета. А их невероятно много, ведь мы видим лишь одну стотысячную часть спектра. Надеемся, теперь вам будет о чём поразмышлять перед сном!


К атегория: Малярные работы

Свет и цвет в природе

Возможность разложения света была впервые обнаружена Исааком Ньютоном. Узкий луч света, пропущенный им через стеклянную призму, преломился и образовал на стене разноцветную полоску - спектр.

По цветовым признакам спектр можно разделить на две части. В одну часть входят красные, оранжевые, желтые и желто-зеленые цвета, а в другую - зеленые, голубые, синие и фиолетовые.

Длина волн лучей видимого спектра различна и лежит приблизительно в пределах от 380 до 760 нм(ммк). За прёделамп видимой части спектра располагается невидимая его часть. Участки спектра с длиной волны более 780 нм называются инфракрасными, или тепловыми. Они легко обнаруживаются термометром, установленным на этом участке спектра. Участки спектра с длиной волны менее 380 нм называются ультрафиолетовыми. Эти лучи химически активны; они разрушают несветопрочные пигменты и ускоряют старение лакокрасочных пленок.

Световые лучи, исходящие от различных источников света, имеют неодинаковый спектральный состав и поэтому значительно отличаются по цвету. Например, свет обычной электрической лампочки желтее солнечного света. Объясняется это тем, что в спектре луча дневного света преобладают волны, соответствующие синему цвету, в то время как в спектре электрической лампочки с вольфрамовой и особенно с угольной нитью преобладают красные и оранжевые цветовые волны. Поэтому один и тот же предмет может принимать различную окраску в зависимости от того, каким источником света он освещен.

Вследствие этого и окраска комнаты и предметов, находящихся в ней, воспринимается нами при естественном и искусственном освещении с различными цветовыми оттенками.

Поэтому, подбирая красочные составы для окраски, необходимо учитывать условия освещения во время эксплуатации.

Цвет каждого предмета зависит от его физических свойств, т. е. способности отражать, поглощать или пропускать лучи света. Лучи света, падающие на поверхность, делятся на отраженные, поглощенные и пропущенные.

Тела, почти полностью отражающие или поглощающие лучи света, воспринимаются нами как непрозрачные, а тела, пропускающие значительное количество света, - как прозрачные (стекло).

Если поверхность или тело отражает или пропускает в одинаковой степени все лучи видимой части спектра, то такое отражение или пропускание светового потока называется неизбирательным.

Так, предмет кажется черным, если он поглощает в равной степени почти все лучи спектра, и белым, если отражает в равной степени почти все лучи спектра.

Если смотреть на предметы через бесцветное стекло, их цвет останется для нас прежним. Следовательно, бесцветное стекло почти полностью пропускает все цветовые лучи спектра, за исключением незначительного количества отраженного и поглощенного света, также состоящего из всех цветовых лучей спектра.

Если же заменить бесцветное стекло синим, то все предметы за стеклом покажутся синими (синее стекло пропускает в основном только синие лучи спектра, поглощая почти полностью лучи остальных цветов).

Цвет непрозрачных предметов также зависит от отражения и поглощения поверхностью волн различного спектрального состава. Так, предмет кажется синим, если он отражает только синие лучи, а все остальные поглощает; если же предмет отражает красные и поглощает все остальные лучи спектра, он воспринимается как красный, и т. д.

Такое пропускание и поглощение предметами лучей называется избирательным.

Ахроматические и хроматические тона. Существующие в природе цвета по цветовым свойствам можно разделить на две группы: ахроматические, или бесцветные, и хроматические, или цветные.

К ахроматическим тонам относятся белый, черный и целый ряд промежуточных серых тонов.

Группа хроматических цветовых тонов состоит из красных, оранжевых, желтых, зеленых, фиолетовых и бесчисленного множества промежуточных цветов.

Луч света от предметов, окрашенных в ахроматические тона, отражается, не претерпев каких-либо заметных изменений. Поэтому эти тона воспринимаются нами только как белые или черные с целым рядом промежуточных серых оттенков, которые в этом случае зависят исключительно от способности тела поглощать или отражать все лучи спектра. Чем больше света отражает предмет, тем он кажется белее, и чем большее количество света предмет поглощает, тем он кажется чернее.

В природе не существует материала, отражающего или поглощающего все 100% падающего на него света, поэтому нет ни идеально белого, ни идеально черного тона. Самый белый тон имеет порошок химически чистого сернокислого бария, спрессованный в плитку, который отражает 94% падающего на него света; цинковые белила несколько темнее сернокислого бария, свинцовые белила еще темнее и далее, по мере уменьшения белизны, располагаются: гипс, литопонные белила, писчая бумага высшего сорта, мел и т. д. Наиболее темной считается поверхность черного бархата, отражающего около 0,2% света. Таким образом, ахроматические тона отличаются один от другого только светлотой. Человеческий глаз различает около 300 ахроматических оттенков.

Хроматические цвета обладают тремя свойствами: цветовым тоном, светлотой и насыщенностью цвета.

Цветовым тоном называют такое свойство цвета, которое позволяет глазу человека воспринимать и определять красный, желтый, синий и другие спектральные цвета. Он определяется длиной волны. Цветовых тонов существует значительно больше, чем названий для них.

Основным, естественным рядом цветовых тонов является солнечный спектр, в котором цветовые тона располагаются так, что постепенно и непрерывно переходят один в другой; красный через оранжевый переходит в желтый, далее через светло-зеленый и темно-зеленый - в голубой, затем в синий и, наконец, в фиолетовый.

Светлота - это свойство цветной поверхности отражать большее или меньшее количество падающих лучей света. При большем отражении света мы воспринимаем цвет поверхности как светлый, при меньшем - как темный. Это свойство является общим для всех тонов, как хроматических, так и ахроматических, поэтому по светлоте можно сравнивать любые тона. К хроматическому цвету любой светлоты легко подобрать подобный ему по светлоте ахроматический тон.

Для практических целей при определении светлоты пользуются так называемой серой шкалой, которая состоит из набора выкрасок ахроматических тонов, постепенно переходящих от наиболее черного, темно-серого, серого и светло-серого к почти белому. Эти выкраски наклеены между отверстиями в картоне, против каждой выкраски обозначен коэффициент отражения данного тона. Шкалу накладывают на исследуемую поверхность и, сопоставляя ее с вы-краской, просматриваемой через отверстия шкалы, определяют светлоту.

Насыщенностью хроматического цвета называют степень отличия этого цвета от ахроматического серого, равного ему по светлоте.

Это свойство хроматических цветов можно представить яснее, прибавляя к какому-либо спектральному цвету, например желтому, немного серого, равного ему по светлоте. В этом случае цветовой тон не изменится, так как прибавляемый ахроматический тон не имеет цветового тона, не изменится и светлота цветового тона, так как добавляемый серый равен ему по светлоте. Но полученный желтый цвет будет заметно отличаться от первоначального-он посереет, станет менее желтым. Продолжая дальнейшее прибавление серого тона к желтому, получают ряд промежуточных желтых цветовых тонов, все более серых, вплоть до того, что желтый цвет будет едва заметным. Таким образом, при прибавлении к желтому цвету серого насыщенность желтого цвета непрерывно снижается до минимально возможного.

Предельно насыщенными, а следовательно, и чистыми являются цвета спектра. Остальные хроматические цвета тем насыщенней, чем чище и ближе к спектральным.

Снижение насыщенности цветовых тонов достигается прибавлением не только серого тона, но и любого ахроматического - от черного до белого. При прибавлении черного получают темно-зеленые, темно-синие, коричневые, а белого - розовые, бледно-зеленые, светло-голубые тона. При постепенном прибавлении белого одновременно с уменьшением насыщенности возрастает светлота.

Смешение цветов. Восприятие цветов, которые мы видим вокруг себя, вызывается действием на глаз сложного цветового потока, состоящего из световых волн различной длины. Но впечатление пестроты и многоцветности не создается, гак как глаз обладает свойством смешивать разнообразные цвета.

Для изучения законов смешивания цветов пользуются приборами и приемами, дающими возможность смешивать цвета в различной пропорции.

С помощью трех проекционных фонарей с лампами достаточной мощности и трех светофильтров - синего, зеленого и красного - можно получить различные смешанные цвета. Для этого перед объективом каждого фонаря устанавливают светофильтры и направляют цветовые пучки на белый экран. При попарном наложении цветовых пучков на один и тот же участок получают три разнообразных цвета: сочетание синего и зеленого дает голубое пятно, зеленого и красного - желтое, красного и синего - пурпурное. В центре, где все три цветовые пучка взаимно перекрываются, при соответствующей регулировке интенсивности световых пучков с помощью диафрагм или серых светофильтров можно получить белое пятно.

Простой прибор для смешивания цветов - это вертушка-юла. Два бумажных кружка разного цвета, надрезанные по радиусу и имеющие одинаковый диаметр, вставляют один в другой. При этом образуется двухцветный диск, в котором, перемещая кружки, можно изменять величину цветных секторов. Собранный диск надевают на ось вертушки и приводят в движение. От быстрого чередования цвет двух секторов сливается в один. Создается впечатление, что кружок одноцветный. В лабораторных условиях обычно пользуются вертушкой с электродвигателем, имеющим скорость вращения не менее 2000 об/мин.

С помощью вертушки можно смешать несколько цветов, совмещая одновременно соответствующее количество разноцветных дисков.

В практике широко применяют пространственное смешение цветов, которое основано на получении зрительного эффекта в результате смешения двух или более цветов, расположенных близко один к другому и рассматриваемых с достаточно большого расстояния.

На принципе пространственного смешения цветов построено применение в отделочных работах накатывания разноцветных рисунков по цветному фону, набрызг и т. п.

Описанные способы смешения цветов являются оптическими, так как цвета складываются или сливаются в один суммарный цвет на сетчатке нашего глаза. Этот вид смешения носит название слагательного, или аддитивного.

Но не всегда при смешении двух хроматических цветов получается смешанный хроматический цвет. В отдельных случаях, если один из хроматических цветов дополнить специально подобранным к нему другим хроматическим цветом и смешать их в строго определенной пропорции, может получиться ахроматический тон. Если при этом были использованы хроматические цвета, близкие по чистоте цветового тона к спектральным, получающийся новый цвет окажется белым или светло-серым. Если пропорциональность при смешении нарушена, цветовой тон окажется того цвета, которого было взято больше, причем насыщенность тона понизится.

Два хроматических цвета, образующих при смешении в определенной пропорции ахроматический тон, называются взаимно дополнительными цветами. Смешение дополнительных цветов никогда не может дать нового цветового тона. В природе существует множество пар взаимно дополнительных цветов, но для практических целей из основных пар дополнительных цветов создают цветовой круг из восьми цветов, в котором взаимно дополнительные цвета размещают на противоположных концах одного диаметра.

В этом круге красному цвету соответствует дополнительный голубовато-зеленый, оранжевому - голубой, желтому - синий, желто-зеленому- фиолетовый. Следует отметить, что в любой паре дополнительных цветов один всегда принадлежит к группе теплых, а другой - к группе холодных.

В зависимости от того, в пределах какого интервала расположены цветовые тона, их сочетания приобретают большую или меньшую гармонию. Наиболее гармоничны цветовые тона, расположенные в пределах больших и малых интервалов, наименее - в пределах средних интервалов (1/4 окружности).

Помимо слагательного существует вычитательное, или механическое, смешение цветов. Этот вид смешения в отличие от оптического состоит в механическом смешении красок непосредственно на палитре, красочных составов - в емкостях или же в нанесении двух красочных прозрачных слоев один на другой (лессировка).

При механическом смешении красок получается не оптическое сложение цветных лучей на сетчатке глаза, а наоборот, вычитание из белого луча, освещающего нашу цветную смесь, тех лучей, которые поглощаются цветными частицами красок. Так, при освещении белым лучом света предмета, окрашенного цветной смесью пигментов синего и желтого цвета, например берлинской лазурью и желтым кадмием, синие частицы берлинской лазури поглотят красные, оранжевые и желтые лучи, а желтые частицы кадмия - фиолетовые, синие и голубые. Непоглощенными останутся зеленые и близкие к ним голубовато-зеленые и желто-зеленые лучи, которые, отразившись от предмета, и будут восприняты сетчаткой нашего глаза.

Примером вычитательного смешения цветов может служить луч света, пропущенный через три стекла - желтого, голубого и пурпурного цветов, - поставленных одно за другим, и направленный на белый экран. В местах перекрытия двух стекол - пурпурного и желтого - получится красное пятно, желтого и голубого - зеленое, голубого и пурпурного - синее. В местах же одновременного перекрытия трех цветов появится черное пятно.

Количественная оценка цвета. Для цветового тона, чистоты цвета и отражения цветом света установлены количественные оценки.

Цветовой тон определяется длиной его волны и лежит в пределах от 380 до 780 нм. Условно цветовой тон обозначают греческой буквой к (ламбда).

Такое определение цвета можно изобразить графически в виде диаграммы, в свое время построенной Исааком Ньютоном. Диаграмма представляет собой окружность, по которой в спектральной последовательности расположены основные цвета спектра. Круг замыкается смешанным красно-фиолетовым (пурпурным) цветом. В центре круга помещается белый тон с Р = 0,0. От центра к основной окружности расположились на равном расстоянии пять кон-Центрических кругов с отметками, обозначающими чистоту спектральных цветов, - 0,2; 0,4; 0,6; 0,8. По радиусам, идущим от центра к части окружности, обозначающей тот или иной спектральный цвет, располагается этот же спектральный цвет, но с различной чистотой от белого до спектрально чистого. На рис. 55 точкой обозначено расположение на диаграмме светло-оранжевого цвета с длиной волны к = 600 нм и чистотой цвета Р = 0,4.

В настоящее время действует система графического определения цвета, построенная в прямоугольных координатах на основе трех основных цветов - красного, зеленого и синего.

Рис. 1. Схема цветового круга

Третья количественная оценка цвета - коэффициент отражения цветом света, который условно обозначается греческой буквой g (ро). Он всегда меньше единицы. Коэффициенты отражения окрашенных или облицованных различными материалами поверхностей оказывают огромное влияние на освещенность помещений и всегда принимаются во внимание при проектировании отделки зданий различного назначения. С увеличением чистоты цвета коэффициент отражения уменьшается, и наоборот, с потерей цветом чистоть! и приближением его к белому коэффициент отражения увеличивается.

Рабочим, занимающимся отделкой помещений, необходимо знать коэффициенты отражения света различными материалами, используемыми при окрасках, оклеивании обоями, облицовке поверхностей.

При окраске и облицовке поверхностей применяют цвета, отражающие свет в следующих процентах: потолки - 70-85; стены (верхняя часть) -60-80; стены (панели) -50-65; мебель и оборудование- 50-65; полы - 30-50. При этом матовые окраски и облицовки с диффузным (рассеянным) отражением света создают условия наиболее равномерного (без бликов) освещения, что обеспечивает нормальные условия для органов зрения.



- Свет и цвет в природе

То, что цвет - это электромагнитная волна, воспринимаемая человеческим глазом и видимый участок спектра, И. Ньютон описал в работе «Оптика». Несмотря на то, что задолго до этого английский философ и естествоиспытатель Роджер Бэкон также наблюдал оптический спектр в стакане с водой, первое объяснение видимого излучения дал именно И. Ньютон. Подобные попытки исследования цвета чуть позже были проведены Иоганном Гете в труде «Теория цветов», в XVIII веке, в России, М. В. Ломоносовым.

И. Ньютону удалось разложить белый свет на цвета спектра что явилось первым значительный прорывом в изучении цвета.

Главной предпосылкой ученого к открытию спектра стало стремление усовершенствовать линзы для телескопов: основным недостатком телескопических изображений являлось наличие окрашенных в радужные цвета краев.

В 1666 году он произвел в Кембридже опыт разложения белого цвета призмой: через маленькое круглое отверстие в ставне окна в затемненную комнату проникал луч света, а на его пути оказывалась стеклянная трехгранная призма, пучок света в которой преломлялся . На экране, стоявшем за призмой, появлялась разноцветная полоса, позднее названная спектром. Он определил, что луч белого дневного света составляют лучи разных цветов, а именно: красного, оранжевого, желтого, зеленого, синего (голубого), индиго и глубоко фиолетового.

Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. - М.: Государственное издательство тсхнико- теоретической литературы, 1954.

Он объяснил, что их смешение является главной причиной многообразия цветовых гармоний, богатства красок природы.

Он так же обнаружил, что цветной луч, отражаясь и преломляясь бесконечное множество раз, остается той же окраски, откуда следовало, что цвет - некая устойчивая характеристика. Он также заметил, что при добавлении к цветному лучу белого света происходит его усложнение, в результате чего цвет разрежается и слабнет, пока не исчезнет совсем, с образованием серого или белого. Таким образом, чем сложнее цвет, тем он менее полон и интенсивен.

И. Ньютон установил также, что можно наоборот, смешав семь цветов спектра, вновь получить белый цвет. Для этого он поместил на пути разложенного призмой цветного пучка (спектра) двояковыпуклую линзу, которая снова налагает различные цвета один на другой; сходясь, они образуют на экране белое пятно. Если же поместить перед линзой (на пути цветных лучей) узкую непрозрачную полоску, чтобы задержать какую-либо часть спектра, то пятно на экране станет цветным.

Ученый также определил показатель преломления лучей различного цвета. Для этой цели в экране прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой выделенный пучок, преломляясь во второй призме, уже не растягивался в полосу: ему соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка. Зависимость показателя преломления от цвета получила название «дисперсия цвета» (от лат. dispergo – разбрасываю).

Изучая природу света и цвета, Ньютон пришел к выводу, что постоянные цвета естественных тел происходят по причине того, что некоторые тела отражают одни сорта лучей, другие тела - иные сорта обильнее, чем остальные 1 . Цветные порошки, как заметил Ныотон, подавляют и удерживают в себе весьма значительную часть света, которым они освещаются. И они становятся цветными, отражая наиболее обильно свет их собственной окраски 2 . Ньютон И. Оптика или трактат об сражениях, преломлениях, изгибаниях и цветах света. - М.: Государственное издательство техшко- теоретической литературы, 1954. - 367 с.

Необходимо сказать, что, несмотря на дальнейшие изыскания, данную теорию (корпускулярная теория света) считать неверной нельзя, потому что цвет действительно можно рассматривать как поток фотонов - элементарных безмассовых частиц, двигающихся со скоростью света, и имеющих электрический заряд, равный нулю. Фотону как квантовой частице свойственен корпускулярно-волновой дуализм, то есть проявление одновременно свойств частицы и волны. Назвать И. Ньютона противником волновой теории не представляется возможным: он не отвергал эту идею. Ньютон провел аналогию между цветом и звуком, считая, что оба этих явления имеют подобную природу, чем, вероятно, предвосхитил открытие электромагнитной природы звука и света. «Как звук колокольчика, или музыкальной струны, или других звучащих тел есть не что иное, как колеблющееся движение, и в воздухе от предмет распространяется не что иное, как это движение... в последнем же появляются ощущения этих движений в форме цветов» .

С другой стороны в трактате, представленном в Королевское общество в 1675 году, он пишет, что свет не может быть просто колебаниями эфира, так как тогда он, например, мог бы распространяться по изогнутой трубе, как это делает звук. Но также он предлагает считать, что распространение света возбуждает колебания в эфире, что и порождает дифракцию и другие волновые эффекты.

В XVIII веке в России, М. В. Ломоносов исследуя проблемы цветовых явлений и делает ряд важных открытий, которые не получили широкой известности. Он обнаружил, что свет составляют, как бы три эфира, которые истекают от солнца и светящихся тел подобно реке. Эфиры обладают тремя типами движения, которые он назвал беспрестанным, зыблющимся и коловратным . Эфирные потоки составляют три типа частиц разных размеров. Из них, соляные частицы составляют эфир красного, ртутные - желтого, серные - голубого цвета. Остальные цвета образуются смешением красного, желтого и голубого. Эфирные частицы сцепляются с подходящими частицами на поверхности предметов и заставляют их колебаться с той или иной интенсивностью. Часть движения, таким образом, передастся, а оставшееся движение определяет видимый нами цвет. Если поверхность предмета поглотила коловратное или вращающиеся движение эфирных частиц - глаз видит черный цвет.

Так Ломоносов открыл физико-химическую природу цвета .

Согласно этой теории, температура влияет на интенсивность краски, что он доказал на опыте. Глаз человека воспринимает цвет, благодаря тому, что движение эфирных частиц, не поглощенное предметом, производит соответствующее движение на дне глаза.

По мере развития волновой теории света было уточнено то, что каждому цвету соответствует определенная частота световой волны. Английский ученый Т. Юнг , в 1800 году разработавший волновую теорию интерференции на основе сформулированного им принципа суперпозиции волн . По результатам своих опытов он довольно точно оценил длину волны света в различных цветовых диапазонах.

Согласно принципу интерференции (нелинейное сложение интенсивностей нескольких световых волн) темноту можно получить, сложив свет со светом, то есть взаимно погасить свет. Юнг исследовал различные приложения принципа интерференции и пришел к заключению, что свет должен распространяться волновым движением. Объяснить полосы интерференции с точки зрения истечения оказалось совершенно невозможным. Он вычислил также среднюю длину волны света различных цветов. Томас Юнг предполагал, что цвета соответствуют волнам различной длины, при чем в красных лучах волны самые длинные, в фиолетовых - самые короткие.

С развитием квантовой механики утвердилась идея Луи де Бройля о корпускулярно-волновом дуализме, по которой свет должен обладать одновременно волновыми свойствами, чем объясняется его способность к дифракции и интерференции, и корпускулярными свойствами, чем объясняется его поглощение и излучение.

Для полного понимания сущности цвета обратимся к понятию электромагнитного излучения , то есть к распространяющемуся в пространстве возмущению электромагнитного поля. Электромагнитное излучение принято делить по частотным диапазонам, между которыми нет резких переходов - границы условны. На Рис.2 представлен полный спектр электромагнитного излучения, отградуированный по уменьшению частоты: радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и гамма-излучение.

Рисунок 2 ‑ Полный спектр электромагнитного излучения

В общем спектре электромагнитных излучений видимое излучение составляет очень небольшой процент.

Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение - это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1).

Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр . Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет - всего лишь звено одной очень длинной электромагнитной волны.

От света к цвету и обратно

Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет - луч белого цвета, а после прохождения через призму разделился на 7 новых цветов. Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) - это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн. Смотрим на рисунок 2.

Рисунок 2 – Прохождение луча солнечного света через призму.

Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение.

Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue).

Проверим как это работает на практике. Возьмем 3 источника света (прожектора) - красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3.

Рисунок 3 - Результат наложения красного, зеленого и синего цветов.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный - пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета. Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще. То есть там, где нет света - там мрак, там всё становится черным. Пример тому - иллюстрация 4.

Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом. Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения. Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга. Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

Рисунки 5 и 6– Зависимость параметров цвета от источника излучения

Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

Цветовой тон (hue)

– Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

Яркость (Brightness)

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.). А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии - нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом. Например, цепочка снижения яркости красного цвета: красный - алый - бордовый - бурый - черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

Светлость (Lightness)

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный - малиновый - розовый - бледно-розовый - белый.

Насыщенность (Saturation)

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%. Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%. Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV).

Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop.

Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка. Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов. Следующая буква – S (saturation, насыщенность). У нас указано значение 100% - это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета. Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) - это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале. Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255. Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 - это код цвета. У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах , в которой автор рассказывает как определять цвет по шестнадцатеричному коду.
На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB.
Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет. Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет . А когда объект отражает почти весь падающий свет, он принимает белый цвет . Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света , которым этот объект освещается. Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря - физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

- Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

- Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

- И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.

Зеленая трава выглядит для нас зеленой, потому что при освещении белым светом она поглощает красную и синюю волну спектра и отражает зеленую волну (Рисунок 8).

Рисунок 8 – Отражение зеленой волны спектра

Бананы на рисунке 9 выглядят желтыми, потому что они отражают волны, лежащие в желтой области спектра (желтую волну спектра) и поглощает все остальные волны спектра.

Рисунок 9 – Отражение желтой волны спектра

Собачка, та что изображена на рисунке 10 – белая. Белый цвет – результат отражения всех волн спектра.

Рисунок 10 – Отражение всех волн спектра

Цвет предмета – это цвет отраженной волны спектра. Вот так предметы приобретают видимый нами цвет.

В следующей статье речь пойдет о новой характеристике цвета -

mob_info