Рентгеновский диапазон. Телескоп Чандра, туманности, пульсары, черные дыры. Школьная энциклопедия Рентгеновские телескопы

рентгеновский телескоп

прибор для исследования временных и спектр . св-в источников косм. рентг. излучения, а также для определения координат этих источников и построения их изображения.

Существующие Р. т. работают в диапазоне энергий  фотонов рентг. излучения от 0,1 до сотен кэВ, т. е. в интервале длин волн от 10 нм до сотых долей нм. Для проведения астрономич. наблюдений в этой области длин волн Р. т. поднимают за пределы земной атмосферы на ракетах или ИСЗ, т. к. рентг. излучение сильно поглощается атмосферой. Излучение с >20 кэВ можно наблюдать начиная с высот ~30 км с аэростатов.

Р. т. позволяет: 1) регистрировать с высокой эффективностью рентг. фо-

тоны; 2) отделять события, соответствующие попаданию фотонов нужного диапазона энергий от сигналов, вызванных воздействием заряж. ч-ц и гамма-фотонов; 3) определять направление прихода рентг. излучения.

В Р. т. для диапазона 0,1—30 кэВ детектором фотонов служит пропорциональный счётчик, наполненный газовой смесью (Ar+СН4, Ar+СО2 или Хе+СО2). Поглощение рентг. фотона атомом газа сопровождается испусканием фотоэлектрона (см. Фотоэлектронная эмиссия), оже-электронов

Рис. 1. а—схема рентг. телескопа со щелевым коллиматором; б &mdash ; работа телескопа в режиме сканирования.

(см. Оже-эффект) и флуоресцентных фотонов (см. Флуоресценция). Фотоэлектрон и оже-электрон быстро теряют свою энергию на ионизацию газа, флуоресцентные фотоны также могут быстро поглотиться газом благодаря фотоэффекту. В этом случае полное число образовавшихся электронно-ионных пар пропорц. энергии рентг. фотона. Т. о., по импульсу тока в цепи анода восстанавливается энергия рентг. фотона.

В обычных условиях Р. т. облучается мощными потоками заряж. ч-ц и гамма-фотонов разл. энергий, к-рые детектор Р. т. регистрирует вместе с рентг. фотонами от исследуемого источника излучения. Для выделения рентг. фотонов из общего фона применяется метод антисовпадений (см. Совпадений метод). Приход рентг. фотонов фиксируют также по форме создаваемого ими импульса электрич. тока, поскольку заряж. ч-цы дают сигналы, более затянутые во времени, чем те, что вызываются рентг. фотонами.

Для определения направления на рентг. источник служит устройство, состоящее из щелевого коллиматора и жёстко закреплённого с ним на одной раме звёздного датчика. Коллиматор (набор пластин) ограничивает поле зрения Р. т. и пропускает рентг. фотоны, идущие лишь в небольшом телесном угле (~10—15 квадратных градусов). Рентг. фотон , прошедший коллиматор (рис. 1,a), регистрируется верх. объёмом счётчика. Возникший импульс тока по цепи верх. анода

проходит схему антисовпадений (поскольку нет запрещающего сигнала с ниж. анода) и подаётся на анализатор для определения временных и энергетич. хар-к фотона. Затем по телеметрии информация передаётся на Землю. Одновременно передаётся информация звёздного датчика о ярчайших звёздах, попавших в его поле зрения. Эта информация позволяет установить положение осей Р. т. в пр-ве в момент прихода фотона.

При работе Р. т. в режиме сканирования направление на источник определяется как положение Р. т., при к-ром скорость счёта достигает максимума. Угл. разрешение Р. т. со щелевым коллиматором или аналогичным сотовым коллиматором составляет несколько десятков угловых минут.

Значительно лучшим угл. разрешением (~ неск. десятков секунд) обладают Р. т. с модуляц. коллиматорами (рис. 2, а). Модуляц. коллиматор представляет собой две (или больше) проволочные одномерные сетки, устанавливаемые между детектором и щелевым коллиматором, для чего последний поднимается над детектором на высоту ~1 м и наблюдения ведутся в режиме либо сканирования (рис. 1,б), либо вращения относительно оси, перпендикулярной плоскости сеток. Проволочки в каждой сетке коллиматора устанавливаются параллельно друг другу на расстоянии, равном диаметру проволочки. Поэтому при движении источника по полю зрения Р. т. тени от верх. проволочек скользят по ниж. сетке, попадая то на проволочки, и тогда скорость счёта максимальна, то между ними, и тогда она минимальна (фон).

Угл. распределение скорости счёта Р. т. с модуляц. коллиматором (ф у н к ц и я о т к л и к а) показано на рис. 2, б. Для n-сеточного модуляц. коллиматора угол между соседними максимумами 0=2 n-1 r, где r=d/l — угл. разрешение Р. т. В большинстве случаев Р. т. с модуляц. коллиматорами дают точность локализации рентг. источников, достаточную для их отождествления с небесными объектами, излучающими в иных диапазонах эл.-магн. волн.

С модуляц. коллиматорами начинает конкурировать методика кодиров. апертуры, позволяющая получить r<1". В Р. т. с кодиров. апертурой поле зрения перекрывается экраном, обладающим неоднородным пропусканием по всей площади. Детектор излучения в таком Р. т. позиционно-чувствительный, т. е. кроме энергии рентг. фотона измеряют и координаты точки, где он был зарегистрирован. При таком экране точечный источник излучения, находящийся на бесконечности, даёт распределение скорости счёта по поверхности детектора, соответствующее функции пропускания экрана.

Рис. 2. а — устройство рентг. телескопа с модуляц. коллиматором; б — угл. распределение скорости счёта.

Положение источника рентг. излучения в поле зрения Р. т. определяется по положению максимума корреляц. функции между полученным распределением скорости счёта по поверхности детектора и функцией пропускания экрана.

В области энергий >15 кэВ в кач-ве детекторов Р. т. применяют крист. сцинтилляторы NaI (Тl) (см. Сцинтилляционный счётчик ); для подавления фона заряж. ч-ц высоких энергий и гамма-фотонов служат устанавливаемые на антисовпадения с первыми крист. сцинтилляторы CsI(Tl). Для ограничения поля зрения в таких Р. т. применяют активные коллиматоры — цилиндры из сцинтилляторов, включённые на антисовпадения со сцинтилляторами NaI(Tl).

В диапазоне энергий от 0,1 до неск. кэВ наиболее эффективны Р. т., в к-рых осуществляется фокусировка излучения, падающего под малыми углами на фокусирующее зеркало (рис. 3). Чувствительность такого Р. т. в ~10 3 раз превосходит Р. т. др. конструкций благодаря его способности собирать излучение со значит. площади и направлять на детектор малых размеров, что существенно повышает отношение сигнал/шум. Р. т., построенный по такой схеме, даёт двумерное изображение источника рентг.

Рис. 3. Схема фокусирующего рентг. телескопа.

излучения подобно обычному оптич. телескопу. Для построения изображения в фокусирующем Р. т. в кач-ве детекторов используют позиционно-чувствительные пропорц. камеры, микроканальные детекторы , а также приборы с зарядовой связью (ПЗС). Угл. разрешение в первом случае определяется гл. обр. пространств. разрешением камеры и составляет ~1", микроканальные детекторы и ПЗС дают 1—2" (для близких к оси пучков). При спектрометрич. исследованиях применяют ПП детекторы, брэгговские крист. спектрометры и дифракц. решётки с позиционно-чувствит. детекторами. Косм. источники рентг. излучения очень разнообразны. Рентг. излучение Солнца было открыто в 1948 в США с ракеты, поднявшей Гейгера счётчики в верх. слои атмосферы. В 1962 группой Р. Джиаккони (США) также с ракеты был обнаружен первый источник рентг. излучения за пределами Солнечной системы — «Скорпион Х-1», а также диффузный рентг фон , по-видимому, внегалактич. происхождения. К 1966 в результате экспериментов на ракетах было открыто ок. 30 дискретных рентг. источников. С выводом на орбиту серии спец. ИСЗ («УХУРУ», «Ариэль», «САС-3», «Вела», «Коперник», «ХЕАО» и др.) с Р. т. разл. типов были обнаружены сотни рентг. источников (галактич. и внегалактических, протяжённых и компактных, стационарных и переменных). Мн. из этих источников ещё не отождествлены с источниками, проявляющими себя в оптич. и др. диапазонах эл.-магн. излучения. Среди отождествлённых галактич. объектов: тесные двойные звёздные системы, один из компонентов к-рых — рентг. пульсар; одиночные пульсары (Crab, Vela); остатки сверхновых звёзд (протяжённые источники); временные (транзиентные) источники, резко увеличивающие светимость в рентг. диапазоне и вновь угасающие за время от неск. минут до неск. месяцев; т. н. б а р с т е р ы — мощные вспыхивающие источники рентг. излучения с характерным временем вспышки порядка неск. секунд. К отождествлённым внегалактич. объектам относятся ближайшие галактики (Магеллановы облака и Туманность Андромеды), радиогалактики Дева-А (М87) и Центавр-А (NGC 5128), квазары (в частности, ЗС 273), сейфертовские и др. галактики с активными ядрами; скопления галактик — самые мощные источники рентг. излучения во Вселенной (в них за излучение ответствен горячий межгалактич. газ с темп-рой 50 млн. К). Подавляющее большинство косм. рентг. источников явл. объектами, совершенно непохожими на те, что были известны до начала рентг. астрономии, и прежде всего они отличаются огромным энерговыделением. Светимость галактич. рентг. источников достигает 10 36 —10 38 эрг/с, что в 10 3 —10 5 раз превышает энерговыделение Солнца во всём диапазоне длин волн. У внегалактич. источников была зарегистрирована светимость до 10 45 эрг/с, что указывает на необычность проявляющихся здесь механизмов излучения. В тесных двойных звёздных системах, напр., в кач-ве осн. механизма энерговыделения рассматривают перетекание в-ва от одного компонента (звезды-гиганта) к другому (нейтронной звезде или чёрной дыре) — дисковую аккрецию, при к-рой падающее на звезду в-во образует около этой звезды диск, где в-во благодаря трению разогревается и начинает интенсивно излучать. Среди вероятных гипотез происхождения диффузного рентг. фона, наряду с предположением о тепловом излучении горячего межгалактич. газа, рассматривается обратный Комптона эффект эл-нов на ИК фотонах, испущенных активными галактиками, или на фотонах реликтового излучения. Данные наблюдений с ИСЗ ХЕАО-В свидетельствуют о том, что значительный вклад (>35%) в диффузный рентг. фон дают далёкие дискретные источники, гл. обр. квазары.

X-ray astronomy, ed. R. Giacconi, H. Gursky, Dordrecht—Boston, 1974; Шкловский И. С., Звёзды: их рождение, жизнь и смерть, 2 изд., М., 1977; К а п л а н С. А., Пикельнер С. Б., Физика межзвёздной среды, М., 1979.

Н. С. Ямбуренко.

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Рентгеновский телескоп предназначен для наблюдения удаленных космических объектов в рентгеновском спектре. Обычно телескопы размещают на высотных ракетах или на искусственных спутниках, так как атмосфера Земли является весьма серьезной помехой для рентгеновских лучей.

Американский профессор Рикардо Джиаккони вместе с Бруно Росси в далеком 1960 году опубликовали первую в мире схему настоящего рентгеновского телескопа с фокусирующей зеркальной системой. В чем же состоит принципиальное отличие рентгеновского телескопа от других видов телескопов? Дело в том, что рентгеновские кванты из-за своей большой энергии практически не преломляются в веществе, они поглощаются практически при любых углах падения (кроме самых пологих). Именно поэтому было необходимо, чтобы рентгеновские лучи шли почти параллельно отражающему зеркалу. Такое зеркало представляет собой сужающуюся полую трубку с параболической или гиперболической поверхностью, в которую как раз и входит рентгеновский луч. Телескоп Джиаккони и Росси включал в себя несколько вложенных друг в друга трубковидных зеркал с единой центральной осью для того, чтобы максимально увеличить чувствительность прибора. Подобная схема легла в основу всех современных рентгеновских телескопов.

Современные рентгеновские телескопы работают в диапазоне энергий фотонов рентгеновского излучения от от 0,1 до сотен кэВ. Зеркала подобных телескопов изготавливаются из керамики или металлической фольги (часто используется золото и радий). Критический угол отражения будет зависеть от энергии фотонов.

Основная проблема регистрирования рентгеновских лучей связана с тем, что рентгеновский телескоп облучается мощными потоками заряженных частиц и гамма-фотонов различных энергий, которые регистрируются им наравне с рентгеновскими фотонами. Для решения данной проблемы пользуются методом антисовпадений. Для того чтобы точно определить направление на источник рентгеновского излучения, используют устройство, которое состоит из щелевого коллиматора (набора пластин, которые ограничивают поле зрения) и звёздного датчика (регистрирует прошедший через коллиматор рентгеновский фотон). Возникший импульс тока проходит схему антисовпадений, после чего с помощью специального анализатора определяются энергетические характеристики фотона.


Угловое разрешение подобного телескопа со щелевым коллиматором составляет несколько десятков угловых минут. Также в рентгеновских телескопах могут применяться так называемые модуляционные (качающиеся) коллиматоры (здесь угол разрешения составляет несколько десятков секунд). Подобный коллиматор состоит из двух или более проволочных одномерных сеток, которые устанавливаются между детектором и щелевым коллиматором. Наблюдение производится или в режиме сканирования, или либо вращения относительно оси, перпендикулярной плоскости сеток.

Еще одной более совершенной технологией является методика кодирования апертуры для получения изображений. При использовании данной технологии перед матричным детектором устанавливается маска в виде решетки, обладающей неоднородным пропусканием по всей площади (за счет чередования прозрачных и непрозрачных элементов). Такая конструкция весит гораздо меньше и позволяет получить угловое разрешение менее 1". Примером рентгеновского телескопа является космическая рентгеновская обсерватория «Чандра», запущенная НАСА в 1999 году.

Рентгеновские лучи - диапазон электромагнитного излучения с длиной волны от 0,01 до 10 нм, промежуточный между ультрафиолетовым диапазоном и гамма-лучами. Поскольку фотоны этого диапазона обладают большой энергией, они характеризуются высокой ионизирующей и проницающей способностью, что определяет сферу их практического использования. Эти же свойства делают их очень опасными для живых организмов. От рентгеновских лучей, приходящих из космоса, нас защищает земная атмосфера. Однако с точки зрения астрономов они представляют особый интерес, поскольку несут важную информацию о веществе, разогретом до сверхвысоких температур (порядка миллионов кельвинов), и процессах, ведущих к такому разогреву.
Как и в случае с УФ-диапазоном, первые попытки сфотографировать небесную сферу в рентгеновском спектре были сделаны оборудованием, установленным на высотных геофизических ракетах. Главная проблема здесь заключалась в том, что «обычные» методы фокусировки - с помощью линз или вогнутых зеркал - для высокоэнергетических лучей неприемлемы, поэтому приходится применять сложную технологию «скользящего падения». Такие фокусирующие системы имеют значительно большие массы и габариты, чем оптические инструменты, и должны были появиться достаточно мощные ракеты-носители, чтобы рентгеновские телескопы наконец-то вышли на околоземные орбиты.
Первой такой удачной попыткой стал американский спутник Uhuru (Explorer 42), проработавший с 1970 по 1973 г. Заслуживают упоминания также первый голландский космический аппарат ANS (Astronomical Netherlands Satellite), запущенный в августе 1974 г., и две космических обсерватории НЕАО (NASA) - вторая из них, выведенная на орбиту 13 ноября 1978 г., получила имя Альберта Эйнштейна. Япония 21 февраля 1979 г. запустила аппарат «Хакучо» (CORSA-b), наблюдавший «рентгеновское небо» до 1985 г. Свыше восьми лет - с 1993 до 2001 г. - функционировал второй японский высокоэнергетический телескоп ASCA (ASTRO-D). Европейское космическое агентство «отметилось» в этом направлении спутниками EXOSAT (European X-ray Observatory Satellite, 1983-1986) и BeppoSAX (1996-2003). В начале 2012 г. прекращена эксплуатация одного из «космических долгожителей» - орбитального телескопа Rossi X-ray Timing Explorer, запущенного 30 декабря 1995 г.

Третий из «Большой четверки»


Рентгеновский телескоп Chandra, доставленный на орбиту 23 июля 1999 г. на борту многоразового корабля Columbia (миссия STS-93), стал третьей из четырех больших обсерваторий NASA, запущенных в период с 1990 по 2003 г. Название он получил в честь американского физика и астрофизика индийского происхождения Субраманьяна Чандрасекара.

Геоцентрическая орбита с высотой апогея 139 тыс. км и перигеем около 16 тыс. км позволяет проводить непрерывные сеансы наблюдений продолжительностью до 55 часов, что существенно больше по сравнению с аналогичным показателем для низкоорбитальных спутников Земли. Выбор орбиты связан также с тем, что рентгеновское излучение заметно поглощается даже разреженными газами, содержащимися в самых верхних слоях земной атмосферы - на высотах, где работает большинство искусственных спутников. Период обращения составляет 64,2 часа, причем 85% этого времени Chandra проводит вне пределов радиационных поясов Земли. Недостатком такой орбиты является, в частности, невозможность отправки к телескопу ремонтной бригады (как это неоднократно делалось в случае обсерватории Hubble).


ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕЛЕСКОПА ЧАНДРА

> Масса: 4620 кг
> Длина: 18 м
> Апертура: 120 см
> Фокусное расстояние: 10 м
> Собирающая площадь зеркал: 1100 см 2
> Область спектральной чувствительности: 0,12-12,5 нм (0,1-10 кэВ)

ОСНОВНЫЕ НАУЧНЫЕ ЗАДАЧИ:

> Исследование черных дыр в центрах галактик
> Поиск и изучение сверхмассивных черных дыр, процессов их образования, эволюции, возможного слияния
> Наблюдение ядер активных галактик, окрестностей сверхмассивных черных дыр
> Изучение нейтронных звезд, рентгеновских пульсаров, остатков сверхновых
> Регистрация рентгеновского излучения тел Солнечной системы
> Изучение областей активного звездообразования, процессов формирования и эволюции скоплений галактик.

КОСМИЧЕСКИЕ ТЕЛЕСКОПЫ

Рентгеновский телескоп имеет довольно узкую специализацию. Он предназначен для наблюдений излучения очень горячих объектов Вселенной - таких, как взрывающиеся звезды, галактические кластеры, вещество в окрестностях черных дыр. Однако он может регистрировать и высокоэнергетическое излучение, возникающее тем или иным образом в атмосферах и на поверхностях различных тел Солнечной системы. Первоначально планировалось, что Chandra проработает в космосе 5 лет, но с учетом хорошего состояния бортовых систем его эксплуатация уже несколько раз продлевалась (последний раз - в 2012 г.).

Первое наблюдение телескопа


Галактические остатки вспышек сверхновых являются источником ценнейшей информации о Вселенной, свидетельством чему могут быть результаты анализа наблюдений телескопа Chandra. В частности, с его помощью была детализирована структура остатка Кассиопея А, создана карта всех входящих и исходящих потоков вещества и ударных волн, пространственно разделены истечения межзвездной и околозвездной материи до момента взрыва Сверхновой, локализованы области ускорения космических лучей. Не менее важными результатом стала надежная регистрация сильных широких линий излучения остатка в режиме спектроскопии сверхвысокого пространственного разрешения и картирование распределения элементов от углерода до железа в выбросах вещества. Определенный из этих наблюдений возраст остатка равен примерно 140 годам, что почти совпадает с оценками, сделанными другими методами. Сравнение возрастов и линейных размеров остатков других сверхновых продемонстрировало способность телескопа Chandra измерять скорость их радиального расширения практически в микромасштабах: например, за 22 года размер остатка Сверхновой SN 1987А в Большом Магеллановом Облаке6 изменился всего лишь на 4 угловых секунды.

Туманность, «подпитываемая» пульсаром


Многие астрономы отмечают, что одним из наиболее впечатляющих достоинств телескопа Chandra является его способность исследовать тонкую структуру так называемых плерионов (Pulsar Wind Nebulae - PWN) - туманностей, «подпитываемых» веществом пульсара, особенностью которых являются чрезвычайно малые размеры - порядка нескольких угловых секунд. Особенно преуспел Chandra в изучении такого объекта в созвездии Паруса - пульсара Vela. На данный момент это наиболее исследованный плерион.

Снимок компактной туманности вокруг пульсара в созвездии Паруса, сделанный телескопом Chandra, демонстрирует интересную структуру, состоящую из двух дугообразных ударных волн. Они образовались при столкновении облака газа, окружающего пульсар, с веществом туманности при его движении сквозь нее. Джеты, испускаемые пульсаром, видны как яркие прямые отрезки, перпендикулярные дугам. Их направление практически совпадает с направлением движения сверхплотного объекта. Считается, что они возникают благодаря его вращению, а также взаимодействию вещества с мощными электрическими и магнитными полями в его окрестностях.


Изменения формы и яркости джетов.
КОСМИЧЕСКИЕ ТЕЛЕСКОПЫ

Повторное фотографирование пульсара Vela рентгеновской обсерваторией Chandra выявило заметные изменения формы и яркости джетов на сравнительно коротких отрезках времени. Здесь представлено четыре из 13 его изображений, полученных на протяжении двух с половиной лет. Длина джетов достигает половины светового года (около 5 трлн км), а их ширина остается практически постоянной на всем протяжении и не превышает 200 млрд км, что можно объяснить наличием в них «удерживающего» магнитного поля. Скорость выбрасываемого пульсаром вещества равна почти половине скорости света. В таких релятивистских потоках заряженных частиц должны возникать нестабильности, уже наблюдавшиеся в экспериментах на специальных ускорителях. Теперь их удалось зарегистрировать на примере реального астрофизического объекта. Рентгеновское излучение в данном случае возникает при взаимодействии сверхбыстрых электронов и позитронов с магнитными силовыми линиями.
Похожую нестабильность ученые ожидают обнаружить у джетов, испускаемых сверхмассивными черными дырами в центрах галактик, однако ее временной масштаб должен быть гораздо большим (порядка сотен и тысяч лет).
Крабовидная туманность (Ml) - остаток одной из ярчайших вспышек Сверхновой в истории человечества, наблюдавшейся в 1054 г. Информация о ней содержится в японских, китайских, а также некоторых арабских хрониках.
1. Молодые солнцеподобные звезды. Длительные наблюдения звездных скоплений в Туманности Ориона (М42) показали, что молодые звезды солнечных масс, имеющие возраст от 1 до 10 млн лет, демонстрируют крупномасштабную вспышечную активность, особенно заметную в рентгеновском диапазоне, при этом частота вспышек и их энергетика почти на порядок превосходит процессы подобного рода, наблюдающиеся на нашем Солнце, возраст которого близок к 4,6 млрд лет. Это может существенно влиять на формирование планет и зон обитаемости вокруг таких звезд.
2. Сверхновые и остатки сверхновых. Изображения и спектры сверхновых, полученные телескопом Chandra, позволили изучить динамику ударных волн, генерируемых взрывами массивных звезд а также механизмы ускорения электронов и протонов до околосвето-вых скоростей, определить количество и распределение тяжелых элементов, образующихся при вспышках, и исследовать механизмы самих вспышек.
3. Кольца вокруг пульсаров и джеты. Полученные телескопом Chandra изображения Крабовидной туманности и других остатков сверхновых демонстрируют изумительной красоты кольца и джеты - выбросы высокоэнергетических частиц, испускаемых быстровращающимися нейтронными звездами. Это свидетельствует о том, что они могут служить мощными генераторами таких частиц.
4. Черные дыры звездных масс. Открытие двух черных дыр (ЧД), массы которых превышают 15 масс Солнца, послужило отправным пунктом для пересмотра представлений о возможных механизмах их эволюции.
5. Стрелец А* - черная дыра в центре Млечного пути. Телескоп Chandra измерил энергетический выход и темпы уменьшения количества вещества в радиоисточнике Sagittarius А* - сверхмассивной черной дыре, расположенной в центре нашей Галактики (в направлении созвездия Стрельца). Эти данные позволили астрономам сделать вывод, что современный низкий уровень ее активности не является прямым следствием отсутствия запасов «топлива» в ее окрестностях.
6. Двойные черные дыры. В одной галактике Chandra открыл две сверхмассивных черных дыры, которые, по расчетам, вскоре сольются. Не исключено, что именно таким образом растут ЧД в центрах галактик.
7. Черные дыры, выбрасывающие вещество. Полученные телескопом Chandra изображения скоплении галактик предоставляют наблюдателям драматические свидетельства долговременной повторяющейся взрывной активности, связанной с вращающимися сверхмассивными ЧД. Эта активность имеет следствием высокоэффективную конверсию гравитационной энергии выпадающего на ЧД вещества в потоки высокоэнергетических частиц. Таким образом, черные дыры из «поглотителей» становятся мощными источниками энергии, за счет чего играют ключевую роль в эволюции массивных галактик.
8. «Перепись» черных дыр. При обработке результатов наблюдений в рамках программы Chandra Deep Field были открыты сотни сверхмассивных ЧД, аккреционные диски в окрестностях которых при вращении испускают рентгеновские лучи. Существованием этих источников можно объяснить практически все диффузное рентгеновское «сияние» неба, обнаруженное более 40 лет назад и лишь в наши дни получившее адекватное объяснение. «Перепись» сверхмассивных ЧД дает представление о времени формирования этих объектов и об их эволюции. Специалисты также говорят о возможном открытии так называемых «черных дыр промежуточных масс» - фактически новой категории объектов этого класса.
9. Темная материя. Результаты наблюдений скопления «Пуля» и ряда других галактических скоплений, проведенных телескопом Chandra совместно с несколькими оптическими телескопами, стали бесспорным доказательством того, что большая часть вещества во Вселенной пребывает в форме темной материи. Ее наличие проявляется посредством гравитационного воздействия на «нормальную» материю - электроны, протоны и нейтроны, из которых состоят «привычные» атомы. Однако прямое детектирование этой компоненты мироздания не представляется возможным (по крайней мере, в наше время). Проведенные обзорные исследования многих скоплений галактик подтвердили, что Вселенная содержит в пять раз больше темной материи, нежели «обычной».
10. Темная энергия. Полученные телескопом Chandra наблюдательные данные о скорости роста скоплений галактик показали, что расширение Вселенной ускоряется - главным образом по причине преобладания в пространстве субстанции, получившей название «темная энергия». Это независимое подтверждение открытия, сделанного благодаря анализу оптических наблюдений удаленных сверхновых, исключает любые альтернативы Общей Теории Относительности и ужесточает ограничения на природу темной энергии.
Из других научных достижений наиболее успешного рентгеновского телескопа необходимо отметить проведение детальных спектральных исследований активности сверхмассивных черных дыр в центрах галактик (в том числе обнаружение сверхмассивных ЧД вдвое более активных по сравнению с более ранними оценками), новые данные о процессах формирования скоплений галактик и их эволюции, а также создание общего каталога Chandra Source Catalog (CSC), содержащего свыше 250 тыс. рентгеновских источников на 1% общей площади неба и использующего данные 10 тыс. отдельных наблюдений множества источников различных типов (звезд в непосредственной близости к центру Млечного Пути, галактических и внегалактических рентгеновских двойных, ядер активных галактик и пр.).
ТОП-10 НАУЧНЫХ ДОСТИЖЕНИЙ ЧАНДРА

Через 900 с лишним лет после вспышки яркой Сверхновой в созвездии Тельца на ее месте видна расширяющаяся газовая туманность, в центре которой находится сверхплотная нейтронная звезда - пульсар. Он продолжает излучать энергию и испускать потоки высокоэнергетических частиц. Несмотря на то, что увидеть его можно только в большие телескопы, суммарное энерговыделение этого объекта в 100 тыс. раз превосходит мощность излучения Солнца.
Высокоэнергетические электроны, испускающие рентгеновские лучи, теряют энергию быстрее и не успевают «отлететь» далеко от центра туманности, откуда они были выброшены, поэтому видимый размер области излучающей в более длинноволновом диапазоне, значительно больше плериона, сфотографированного телескопом Chandra.



Мониторинг Крабовидной туманности наземными и космическими инструментами ведется практически постоянно, за исключением периодов времени, когда недалеко от нее на небе находится Солнце. Этот объект без преувеличения можно назвать одной из самых изученных небесных «достопримечательностей».

Мы уже рассмотрели основные детекторы рентгеновского излучения: пропорциональные счетчики для энергий ниже и сцинтилляционные счетчики для энергий до Проблема заключается в необходимости исключить космические лучи, которые также вызывают ионизацию внутри счетчиков. С этой целью применяются три метода.

Первый метод состоит в использовании детекторов антисовпадений. В этом случае рентгеновские счетчики окружаются сцинтиллирующим веществом (пластическим сцинтиллятором, либо сцинтиллирующей жидкостью) и любые события, заставляющие сработать и счетчик, и сцинтиллирующее вещество, отбрасываются как вызванные заряженной частицей (рис. 7.10,а).

Второй метод состоит в анализе формы импульса электронов как функции времени. Быстрая частица, будь то низкоэнергичная частица космических лучей или быстрый электрон, выбитый из стенок счетчика такой частицей, создает ионизованный след, который вызывает широкий импульс на выходе. С другой стороны, фотон с энергией около приводит к локальной ионизации, и импульс в результате этого получается короткий, в особенности его передний фронт. Пробег электронов, выбитых космическими рентгеновскими лучами из атомов аргона, например, обычно меньше 0,132 см. Этот метод различения космических лучей и рентгеновского излучения называется дискриминацией по времени нарастания или по форме импульса (рис. 7.10, б и в).

Третий метод, применяемый для жестких рентгеновских и мягких -квантов, включает детекторы, получившие название слоистые фосфоры. Они состоят из слоев различных сцинтиллирующих материалов, имеющих различные эффективности регистрации фотонов и заряженных частиц. В качестве одного компонента подобной пары может служить детектор, изготовленный из йодистого цезия который чувствителен к фотонам и используется как стандартный сцинтилляционный счетчик фотонов, а другой компонент можно изготовить из пластического сдинтиллятора, который к Фотонам не чувствителен. Следовательно, фотоны дадут сигнал только в первом детекторе, тогда как заряженные честицы, проходящие через

Рис. 7.10. Различение рентгеновского излучения (б) и космических лучей (в) по времени нарастания (или по форме импульса).

детектор, вызывают световые вспышки в обоих материалах. Применяемые в слоистых фосфорах сцинтилляторы подбираются таким образом, утобы они имели различные времена высвечивания, поэтому заряженная частица, пронизывающая прибор, дает две световые вспышки, разделенные интервалом времени Фотон вызывает только одну вспышку, поэтому световые вспышки можно регистрировать одним фотоумножителем, подключенным к электронной системе, способной распознавать космические лучи по характерным признакам и исключать их. По интенсивности световой вспышки, вызванной фотоном, определяется его энергия, при этом для энергий, характерных для -излучения, можно достичь энергетического разрешения порядка 10% и лучше.

Необходимо ограничить поле зрения рентгеновского телескопа, что часто осуществляется с помощью механического коллиматора. В простейшем случае коллиматор состоит из полых трубок прямоугольного сечения. Диаграмма направленности такого коллиматора имеет вид треугольника, поскольку можно считать, что рентгеновское излучение распространяется прямолинейно, т.е. в соответствии с законами геометрической оптики. Единственное исключение составляет случай, когда пучок падает под большим углом к нормали на поверхность вещества высокой электропроводности, такого, как медь. Тогда может происходить отражение при скользящем падении. Для фотонов с энергией меньше - отражение наблюдается, когда угол между направлением луча и поверхностью материала не

Рис. 7.11. Схема простого рентгеновского телескопа. Телескопы такого типа устанавливались на спутниках «Ухуру» и «Ариэль-5».

превышает нескольких градусов. Этот процесс отражения сходен с отклонением радиоволн в ионизованной плазме, в которой плазменная частота возрастает с глубиной. Хотя отражение происходит только при очень малых углах, этого достаточно, чтобы разрабатывать телескопы с зеркалами косого падения, дающие в фокальной плоскости изображение неба (п. 7.3.2).

Итак, можно собрать простой рентгеновский телескоп по схеме, показанной на рис. 7.11. Еще раз отметим, что существенную роль играют современные электронные схемы амплитудных анализаторов, дискриминаторов и схем антисовпадений, которые следует включать в такие телескопы. Такого типа телескопы с большим успехом работали на борту орбитальной рентгеновской обсерватории «Ухуру».

7.3.1. Рентгеновский спутник «ухуру». Рентгеновский спутник «Ухуру» был запущен с побережья Кении в декабре 1970 г. Научная аппаратура, установленная на спутнике, включала два пропорциональных счетчика с бериллиевыми окнами, полезная площадь каждого из них составляла Они были направлены в противоположные стороны перпендикулярно оси вращения и были снабжены механическими коллиматорами, которые ограничивали поле зрения (полная ширина на половине высоты) (рис. 7.12). Период вращения спутника вокруг своей оси составлял 10 мин. Пропорциональные счетчики были чувствительны в области

Чувствительность телескопа. Предел чувствительности телескопа определялся фоновым излучением. Существуют два вида фонового излучения.

1. Число отсчетов в секунду связанное с недостаточным исключением -квантов и космических лучей. Это значение меняется от телескопа к телескопу и для детекторов на борту «Ухуру» оно составляло около

2. Космическое рентгеновское фоновое излучение, яркость которого очень велика Это фоновое излучение изотропно; предполагается, что оно имеет космологическое происхождение. Размерность в энергетическом диапазоне телескопа. Предел чувствительности телескопа определяется статистически. Если принять в качестве критерия обнаружения дискретного рентгеновского источника сигнал, по крайней мере в три раза

Рис. 7.12. Рентгеновский спутник «Ухуру». а - расположение приборов; б - ориентация рентгеновского телескопа .

превышающий стандартное отклонение, связанное с шумом (в данном случае статистический шум), то можно показать, что слабейший точечный рентгеновский источник, доступный обнаружению, должен иметь плотность потока

где телесный угол, равный углу зрения телескопа, время наблюдения источника. Рентгеновское фоновое излучение в области энергий равно и имеет спектр интенсивности, приближенно описываемый соотношением где измеряется в Можно использовать эти данные, чтобы показать, что для коллиматора фоновое излучение обоих типов приблизительно одинаково, тогда как для меньшего поля зрения важен только фон, обусловленный заряженными частицами. Космическое рентгеновское фоновое излучение, как источник шума, становится несущественным, если поле зрения меньше нескольких градусов.

В обычном режиме спутник сканирует одну полосу неба на протяжении многих витков. Попробуйте вычислить слабейший обнаружимый источник за один день наблюдений и сравнить его с действительным пределом «Ухуру» по плотности потока, взятым из каталогов «Ухуру», «Ухуру» в диапазоне Сколько времени надо было сканировать все небо, чтобы добиться такого уровня чувствительности?

Временные вариации. Наиболее выдающимся открытием, сделанным с помощью «Ухуру» были пульсирующие рентгеновские источники. Телескоп

Рис. 7.13. Фрагмент регистрации данных для источника Гистограмма показывает число отсчетов в последовательных -секундных бинах. Непрерывная линия - гармоническая кривая, лучше всего аппроксимирующая результаты наблюдений с учетом изменяющейся чувствительности телескопа при сканировании источника .

с коллиматором регистрировал и каждые 0,096 с передавал на Землю данные о рентгеновском потоке. Средняя плотность потока от источника равна а период 1,24 с. Насколько источник превышал уровень шума, когда были обнаружены его пульсации? Оказывается, в течение периода сигнал источника не сильно превышал уровень шума, но использование методов фурье-анализа (или спектра мощности), если его применить для обработки данных за более продолжительное время, позволяет открыть пульсации значительно меньшей интенсивности. Фрагмент записи показан на рис. 7.13.

7.3.2. Эйнштейновская рентгеновская обсерватория. Самые значительные достижения после наблюдений «Ухуру», вызвавших переворот в рентгеновской астрономии, связаны с полетом рентгеновского спутника называемого также «Эйнштейновской рентгеновской обсерваторией». На борту этой обсерватории было много уникальной аппаратуры, в том числе телескоп косого падения, строящий изображение с высоким угловым разрешением.

Рентгеновские лучи отражаются только от поверхности проводящих материалов при больших углах падения. При энергиях отражений происходит, если угол между поверхностью и направлением падения излучения порядка нескольких градусов; чем больше энергия фотонов, тем меньше должен быть этот угол. Поэтому, чтобы сфокусировать рентгеновские лучи от небесного источника, нужен параболический отражатель с

Рис. 7.14. Фокусировка рентгеновского пучка с помощью комбинации параболического и гиперболического зеркал косого падения. Эта комбинация использована на эйнштейновской рентгеновской обсерватории .

очень большим фокусным расстоянием, причем центральная часть отражателя может не использоваться. Фокусное расстояние телескопа можно уменьшить за счет площади собирающей поверхности, если ввести еще одно собирающее зеркало, при этом предпочтительная конфигурация - комбинация параболоида и гиперболоида (рис. 7.14.) Такая система фокусирует рентгеновские лучи, упавшие только на кольцевую область, показанную на рисунке. Чтобы увеличить собирающую площадь, можно использовать комбинацию из нескольких зеркал. Такая система использовалась в телескопе высокого разрушения HRI, установленном на борту эйнштейновской обсерватории. Она позволяла получать изображение небесной сферы в поле зрения диаметром 25, причем угловое разрушение было лучше в радиусе 5 от центра поля зрения.

В фокальной плоскости следует поместить двухкоординатный детектор с таким же угловым разрешением, как у телескопа. В HRI он состоит из двух микроканальных пластин, установленных друг за другом. Эти детекторы представпяют собой набор очень тонких трубочек, вдоль которых поддерживается высокая разность потенциалов. Электрон, попавший на один конец трубочки, начинает ускоряться и, соударяясь со стенками, выбивает дополнительные электроны, которые в свою очередь ускоряются и также выбивают электроны и т.д. Как и в пропорциональном счетчике, Цель этого процесса - получить от единичного электрона интенсивную электронную вспышку. В HRI передняя поверхность первой микроканальной пластины покрыта Рентгеновский фотон, упавший на переднюю поверхность, выбивает электрон, что приводит к возникновению электронов, регистрируемых на выходе второй пластины. Эта вспышка электронов регистрируется зарядовым детектором с взаимно перпендикулярными сетками, что позволяет точно измерить координаты рентгеновского кванта.

Чтобы определить чувствительность телескопа, нужно знать его эффективную площадь и уровень фоновых сигналов детектора. Поскольку отражение при скользящем падении является функцией энергии фотонов и поскольку имеет место поглощение в материале окна детектора, эффективная

Рис. 7.15. Эффективная площадь телескопа, строящего изображение с высоким разрешением, как функция энергии. Кривые показывают влияние установки перед детектором бериллиевого и алюминиевого фильтров .

площадь сильно зависит от энергии (рис. 7.15). Как и ожидалось, максимальная эффективная площадь соответствует энергиям около и равна примерно Отклик детектора можно изменять, вводя в поле зрения телескопа фильтры (рис. 7.15), таким образом обеспечивается грубое энергетическое разрешение.

Уровень шума в детекторе, в основном обусловленный заряженными частицами, достигает Это означает, что источник каталога «Ухуру» на пределе чувствительности, т.е. точечный источник с плотностью потока порядка единиц «Ухуру» в диапазоне может быть обнаружен на уровне 5 о при экспозиции 50 000 с.

Чтобы в полной мере использовать высокое качество зеркал телескопа, космический аппарат пришлось бы стабилизировать с точностью - Однако такие попытки не предпринимались. Наведение телескопа осуществляется гораздо более грубо, зато в любой момент точно определяется его мгновенная ориентация относительно стандартных ярких звезд. Поэтому, как только наблюдения заканчиваются, карта неба восстанавливается с полным угловым разрешением, которым обладает телескоп. Пример качества изображений, получаемых с помощью HRI, показан на рис. 7.16.

На Эйнштейновской обсерватории были установлены также следующие инструменты.

Рис. 7.16. (см. скан) Рентгеновское изображение остатка сверхновой полученное с помощью телескопа высокого разрешения эйштейновской обсерватории. Каждый элемент изображения имеет размеры время экспозиции равно 32 519 с .

Рис. 7.17. Общая схема расположения приборов на борту Эйнштейновской рентгеновской обсерватории .

1 - козырек, 2 - передний преколлиматор, 3 - система зеркал, 4 - задний преколлиматор, 5 - дифракционный спектрометр, 6 - широкополосный спектрометр с фильтрами, 7 - фокальный кристаллический спектрометр, 8 - отображающий детектор высокрго напряжения, 9 - задняя изолирующая опора, 10 - твердотельный спектрометр, 11 -многоканальный пропорциональный счетчик, 12 - блоки электронной аппаратуры, 13 - оптическая скамья, 14 - передняя изолирующая опора, 15 - контрольный пропорциональный счетчик, 16 - тепловой коллиматор контрольного пропорционального счетчика, 17 - бленды датчиков ориентации.

положительное число, в - угол падения, расстояние между отражающими кристаллографическими плоскостями. Рентгеновские лучи проходят через фокус и, образовав расходящийся пучок, падают на кристалл. Кристалл искривлен так, что отраженное рентгеновское излучение фокусируется на позиционно-чувствительном пропорциональном детекторе. При энергиях энергетическое разрешение его порядка 100-1000, а эффективная площадь составляет около обсерватории в одном параграфе. Основные достижения первого года наблюдений следующие: обнаружение рентгеновского излучения у звезд всех классов светимости, включая все звезды главной последовательности, сверхгиганты и белые карлики; открытие более 80 источников в туманности Андромеды и такого же числа в Магеллановых Облаках; изображения с высоким разрешением в рентгеновском диапазоне скоплений галактик, выявляющие обширный диапазон различных процессов, приводящих к эмиссии рентгеновского излучения; обнаружение рентгеновского излучения от многих квазаров и активных галактик; регистрация источников с плотностью потока в 1000 раз слабее, чем слабейшие источники каталога «Ухуру». Наблюдения, проведенные с Эйнштейновской обсерватории, существенным образом повлияли на все области астрономии. (Значительная часть первых результатов наблюдений Эйнштейновской обсерватории опубликована в Astrophys. J., 234, No. 1, Pt. 2, 1979.)

Полеты космических аппаратов открыли перед астрономами невиданные ранее возможности, которыми наземная астрономия никогда не располагала, да и не могла располагать. Для изучения небесных тел Солнечной системы, нашей Галактики и многочисленных внегалактических объектов теперь в космос запускаются специализированные астрономические станции-обсерватории, оснащенные новейшими физическими приборами. Они улавливают невидимые излучения, которые поглощаются атмосферой и не достигают земной поверхности. В результате стали доступны для исследований все виды электромагнитного излучения, приходящего из космических глубин. Образно говоря, если раньше мы наблюдали Вселенную как бы в одном, черно-белом цвете, то сегодня она представляется нам во всех "цветах" электромагнитного спектра. Но чтобы принимать невидимые излучения, нужны особые телескопы. Каким же образом и с помощью чего можно поймать и исследовать лучи-невидимки?

При слове "телескоп" у каждого возникает представление об астрономической трубе с линзами или зеркалами, то есть представление об оптике. Ведь до недавнего времени небесные объекты изучали исключительно с помощью оптических инструментов. Но для улавливания невидимых излучений, которые сильно отличаются от видимого глазом света, нужны особые приемные устройства. И совсем не обязательно, чтобы своим внешним видом они напоминали привычный нам телескоп.

Приемники коротковолновых излучений совершенно не похожи на оптические телескопы. И если мы говорим, например, "рентгеновский телескоп" или "гамма-телескоп" , то под такими названиями следует понимать: приемник рентгеновского излучения или приемник гамма-квантов.

Вся трудность приема коротковолнового излучения заключается в том, что для электромагнитного излучения с длиной волны, меньшей 0,2 микрона обычные преломляющие (линзовые) и отражательные (зеркальные) системы совершенно не пригодны.

Так, рентгеновские лучи и особенно гамма-кванты настолько энергичны, что они запросто "пробивают" линзы, изготовленные из любых материалов: первоначальное направление движения этих лучей и квантов не меняется. Иными словами, их нельзя сфокусировать! Но как тогда их исследовать? Как сконструировать для них телескоп?

На языке физиков коротковолновое излучение - жесткое излучение! А это значит, что фотоны рентгеновских и гамма-лучей по своим свойствам похожи на высокоэнергичные частицы космических лучей (альфа-частицы, протоны), приходящие к Земле из глубин космоса. Но тогда для регистрации жестких квантов, возможно, будут пригодны счетчики частиц, какими пользуются для изучения космических лучей? Именно подобные счетчики используются в качестве приемного устройства в рентгеновских и гамма-телескопах. Чтобы узнать, откуда приходит рентгеновское излучение, счетчик заключают в массивный металлический тубус. А если счетчик покрывать еще пленками различного состава, то тогда разные счетчики будут принимать кванты различной жесткости. Получается своеобразный рентгеновский спектрограф, позволяющий выявить состав рентгеновского излучения.

Но такой телескоп еще весьма несовершенен. Главный его недостаток - слишком малая разрешающая способность. Счетчик отмечает излучение, попадающее в тубус. А оно поступает с нескольких квадратных градусов неба, где в обычный телескоп видны тысячи звезд. Какие из них излучают рентгеновские лучи? Узнать это удается не всегда. И все же с помощью рентгеновских и гамма-телескопов, работающих на космических орбитальных станциях, уже сегодня добыто много интереснейших сведений об источниках невидимого коротковолнового излучения.

Одним из таких источников является наше Солнце. Еще в 1948 году с помощью фотопластинок, поднятых ракетой "Фау-2" на высоту около 160 км (США, Морская лаборатория), было открыто рентгеновское излучение великого светила. А в 1962 году, заменив фотопластинку счетчиком Гейгера, астрономы обнаружили второй рентгеновский источник уже далеко за пределами Солнечной системы. Это ярчайший рентгеновский источник в созвездии Скорпиона, получивший название Скорпион Х-1. Третьим объектом рентгеновской астрономии в 1963 году стала знаменитая Крабовидная туманность в созвездии Тельца - Телец Х-1.

Наиболее важным этапом в развитии рентгеновской астрономии были запуски первого в мире американского рентгеновского спутника "Ухуру" в 1970 году и первого рентгеновского телескопа-рефлектора "Эйнштейн" в 1978 году. С их помощью были открыты рентгеновские двойные звезды, рентгеновские пульсары, активные ядра галактик и другие источники рентгеновского излучения.

К настоящему моменту на звездном небе известны тысячи источников рентгеновского излучения. Вообще же рентгеновским телескопам доступно около миллиона таких источников, то есть столько, сколько лучшим радиотелескопам. Как же выглядит рентгеновское небо?

В рентгеновских лучах Вселенная представляется совершенно иной, чем она видна в оптические телескопы. С одной стороны, наблюдается увеличение концентрации ярких источников излучения по мере приближения к средней плоскости Млечного Пути - они принадлежат нашей Галактике. С другой - равномерное распределение многочисленных внегалактических рентгеновских источников по всему небу. Многие небесные тела, украшающие небо Земли,- Луна и планеты - в рентгеновских лучах не видны.

Гамма-астрономия тоже родилась вместе с ракетной техникой. Как известно, космическое гамма-излучение возникает вследствие физических процессов, в которых участвуют частицы высоких энергий,- процессов, происходящих внутри атомных ядер. Однако самым интенсивным источником гамма-квантов является процесс аннигиляции , то есть взаимодействия частиц и античастиц (например, электронов и позитронов), сопровождающийся превращением материи (частиц) в жесткое излучение. Следовательно, изучая гамма-кванты, астрофизик может стать однажды свидетелем взаимодействия с телами нашего обычного мира тел теоретически возможного антимира , состоящих исключительно из антивещества .

В нашей Галактике диффузное (рассеянное) гамма-излучение сосредоточено главным образом в галактическом диске; оно усиливается в направлении к центру Галактики. Кроме того, обнаружены дискретные (точечные) гамма-источники, такие как Краб (Крабовидная туманность в Тельце), Геркулес Х-1, Геминга (в созвездии Близнецов) и некоторые другие. Сотни дискретных источников внегалактического гамма-излучения разбросаны буквально по всему небу. Удалось принять гамма-излучение, исходящее из активных областей Солнца во время солнечных вспышек.

На границе с видимым спектром, слева от фиолетовых лучей, располагается невидимое ультрафиолетовое излучение . Начиная с волны 0,29 микрона земная атмосфера полностью поглощает космический ультрафиолет, пожалуй, "на самом интересном месте"...

С началом космических исследований стали проводиться наблюдения также в ультрафиолетовом интервале длин волн. 23 марта 1983 года в нашей стране на высокоэллиптическую околоземную орбиту (высота в перигее 2000 км, в апогее 200 тыс. км) была запущена астрономическая станция "Астрон". Это была первая отечественная станция, снабженная аппаратурой для рентгеновских и ультрафиолетовых наблюдений.

Теперь приборы, фиксирующие ультрафиолетовые лучи, устанавливают на многих космических аппаратах. И если бы мы могли посмотреть на звездное небо через "ультрафиолетовые очки", то оно стало бы для нас совершенно неузнаваемым, как, впрочем, и в других невидимых лучах спектра. Так, например, для жителей Северного полушария Земли особенно выделялась бы на небе звезда дзета Ориона - самое левое светило в его "поясе". Необычно яркими выглядели бы и некоторые другие звезды, особенно горячие.

Удивляет то, что на ультрафиолетовом небе много огромных, яркосветящихся туманностей. Знаменитая туманность Ориона, которую в виде крохотного туманного пятнышка с трудом различает глаз, заняла бы все созвездие "небесного охотника". Исполинская ультрафиолетовая туманность окутывает главную звезду созвездия Девы - сияющую Спику. Эта туманность очень яркая и почти круглая. Ее видимый поперечник примерно в 50 раз больше видимого диаметра полной Луны. А вот сама Спика простым глазом не видна: ее ультрафиолетовое излучение оказалось очень слабым.

В диапазоне волн длиной от 22 микронов до 1 мм (справа от красных лучей видимого спектра) земная атмосфера сильно поглощает инфракрасное (тепловое) излучение небесных тел. К тому же воздух сам является источником тепловых лучей, что мешает наблюдениям в инфракрасном интервале длин волн. Обойти эти препятствия удалось лишь тогда, когда приемники инфракрасного излучения стали размещать за пределами атмосферы - на космических аппаратах.

Инфракрасная техника позволила получить точнейшие данные о рельефе планет, приоткрыла перед исследователями Вселенной пылевую завесу, скрывавшую от людских взоров ядро нашей Галактики, помогла астрофизикам заглянуть в звездные "колыбели" - газопылевые туманности и "прикоснуться", к тайнам рождения звезд.

Таким образом, вынос астрофизических приборов в космос открыл перед астрономией новые горизонты: стала создаваться ультрафиолетовая, рентгеновская и инфракрасная астрономия, а в 70-х годах начались наблюдения в гамма-диапазоне. Сегодня исследователи Вселенной имеют возможность совершать обзор неба практически во всем диапазоне электромагнитного спектра - от сверхкоротких гамма-лучей до сверхдлинных радиоволн. Астрономия стала наукой всеволновой. Собранная с космических "полей" богатая научная "жатва" вызвала настоящий переворот в астрофизике и переосмысление наших представлений о Большой Вселенной.

mob_info