Гравитационные волны нейтронные звезды. Астрономы впервые услышали гравитационные волны от слияния нейтронных звезд. Откуда во Вселенной берутся золото и другие тяжелые элементы

Правообладатель иллюстрации Getty Images Image caption Явление наблюдали с помощью космических обсерваторий и наземных телескопов

Ученым впервые удалось зарегистрировать гравитационные волны от слияния двух нейтронных звезд.

Волны были зафиксированы детекторами LIGO в США и итальянской обсерваторией Virgo.

По данным исследователей, в результате подобных слияний во Вселенной появляются такие элементы, как платина и золото.

Открытие было сделано еще 17 августа. Два детектора в США зарегистрировали гравитационный сигнал GW170817.

Данные с третьего детектора в Италии позволили уточнить локализацию космического события.

"Это то, чего мы все ждали", - заявил исполнительный директор лаборатории LIGO Дэвид Рейтце, комментируя открытие.

Слияние произошло в галактике NGC4993, которая находится на расстоянии около 130 млн световых лет от Земли в созвездии Гидры.

Массы звезд находились в диапазоне от 1,1 до 1,6 массы Солнца, что попадает в область масс нейтронных звезд. Их радиус - 10-20 км.

Звезды называют нейтронными, поскольку в процессе гравитационного сжатия протоны и электроны внутри звезды сливаются, в результате чего возникает объект, состоящий почти исключительно из нейтронов.

Такие объекты обладают невероятной плотностью - чайная ложка материи будет весить около миллиарда тонн.

Правообладатель иллюстрации NSF/LIGO/SONOMA STATE UNIVERSITY Image caption Слияние нейтронных звезд в представлении ученых выглядит примерно так (на фото - компьютерная модель)

Лаборатория LIGO в городе Ливингстон в штате Луизиана - это маленькое здание, от которого под прямым углом отходят две трубы - плечи интерферометра. Внутри каждой из них - лазерный луч, фиксируя изменения в длине которого можно обнаружить гравитационные волны.

Детектор LIGO, установленный посреди обширных лесов, был создан для того, чтобы фиксировать гравитационные волны, которые порождают масштабные космические катаклизмы, такие как слияние нейтронных звезд.

Четыре года назад детектор модернизировали, с тех пор он четырежды засекал столкновения черных дыр.

Гравитационные волны, которые возникают в результате масштабных событий в космосе, приводят к возникновению временно-пространственных искривлений, чем-то похожих на рябь на воде.


Media playback is unsupported on your device

Открытие года: как звучит столкновение нейтронных звезд?

Они растягивают и сжимают всю материю, через которую проходят, в почти незначительной степени - меньше, чем на ширину одного атома.

"Я в восторге от того что мы сделали. Впервые я начала работать над гравитационными волнами в Глазго, будучи еще студенткой. С тех пор прошло много лет, были и взлеты и падения, но теперь все сложилось", - говорит работница LIGO, профессор Норна Робертсон.

"За последние несколько лет мы сначала зафиксировали слияние "черных дыр", а потом - нейтронных звезд, по моим ощущениям, мы открываем новое поле для исследований", - добавляет она.

  • Существование гравитационных волн было предсказано в рамках общей теории относительности Эйнштейна
  • На то, чтобы развить технологию, которая позволила зафиксировать волны, ушли десятилетия
  • Гравитационные волны - это искажения во времени и пространстве, которые возникают в результате масштабных событий в космосе
  • Резко ускоряющаяся материя порождает гравитационные волны, которые распространяются со скоростью света
  • В числе видимых источников волн называют слияния нейтронных звезд и "черных дыр"
  • Исследование волн открывает принципиально новое поле для исследований

Ученые полагали, что высвобождение энергии в таком масштабе приводит к возникновению редких элементов - таких как золото и платина.

По словам доктора Кейт Магуайр из Королевского университета Белфаста, которая занималась анализом первых вспышек, возникших при слиянии, теперь эта теория доказана.

"С помощью самых мощных в мире телескопов мы обнаружили, что в результате этого слияния нейтронных звезд произошел высокоскоростной выброс тяжелых химических элементов, таких как золото и платина, в космос," - говорит Магуайр.

"Эти новые результаты помогли значительно продвинуться к разрешению давнего спора о том, откуда периодической таблице взялись элементы более тяжелые, чем железо", - добавляет она.

Новые рубежи

Наблюдение за столкновением нейтронных звезд также позволило подтвердить теорию о том, что оно сопровождается короткими выбросами гамма-излучения.

Сопоставив собранную информацию о возникших в результате столкновения гравитационных волнах с данными о световом излучении, собранными с помощью телескопов, ученые использовали ранее не применявшийся на практике способ измерить скорость расширения Вселенной.

Один из наиболее влиятельных физиков-теоретиков на планете, профессор Стивен Хокинг в беседе с Би-би-си назвал это "первой ступенькой на лестнице" к новому способу измерения расстояний во Вселенной.

"Новый способ наблюдения за Вселенной как правило ведет к сюрпризам, многие из которых невозможно предвидеть. Мы по-прежнему протираем глаза, а точнее, прочищаем уши после того как впервые услышали звук гравитационных волн," - сказал Хокинг.

Правообладатель иллюстрации NSF Image caption Комплекс обсерватории LIGO в Ливингстоне. От здания отходят "плечи" - трубы, внутри которых в вакууме проходят лазерные лучи

Сейчас оборудование комплекса LIGO модернизируют. Через год он станет в два раза более чувствительным, и сможет сканировать отрезок космоса, который в восемь раз больше нынешнего.

Ученые считают, что в будущем наблюдения за столкновением "черных дыр" и нейтронных звезд станут обычным явлением. Также они надеются научиться наблюдать за объектами, которые сегодня не могут даже представить, и начать новую эпоху в астрономии.

Коллаборация LIGO-Virgo вместе с астрономами из 70 обсерваторий объявила сегодня о наблюдении слияния двух нейтронных звезд в гравитационном и электромагнитном диапазонах: увидели гамма-всплеск, а также рентгеновское, ультрафиолетовое, видимое, инфракрасное и радио излучение.

Иллюстрация столкновения нейтронных звезд. Узкий выброс по диагонали - поток гамма-лучей. Светящееся облако вокруг звезд - источник видимого света, который наблюдали телескопы после слияния. Credit: NSF/LIGO/Sonoma State University/Aurore Simonnet

Совместное наблюдение гамма-всплеска, гравитационных волн и видимого света позволили определить не только область на небе, где произошло событие, но и галактику NGC 4993, к которой звезды принадлежали.


Определение расположения на небе разными детекторами

Что мы можем сказать о нейтронных звездах?

Астрономы наблюдали короткие всплески гамма-излучения на протяжении многих десятилетий, но не знали точно, как они возникают. Основным предположением было, что этот всплеск происходит в результате слияния нейтронных звезд, и теперь наблюдение гравитационных волн от этого события подтвердило теорию.

Когда нейтронные звезды сталкиваются, основная часть их вещества сливается в один сверхмассивных объект, излучая “огненный шар” из гамма излучения (тот самые короткий гамма-всплеск, зарегистрированный через две секунды после гравитационных волн). После этого возникает так называемая килонова , когда вещество, оставшееся после столкновения нейтронных звезд уносится от места столкновения, излучая свет. Наблюдение за спектром этого излучения позволило определить, что тяжелые элементы, такие как золото, рождаются именно в результате килоновых. Ученые наблюдали после-свечение на протяжении недель после события, собирая данные о процессах, происходивших в звездах, и это явилось первым достоверным наблюдением килоновой.

Нейтронные звезды - это сверхплотные объекты, образующиеся после взрыва сверхновой. Давление в звезде столь высоко, что отдельны атомы не могут существовать, и внутри звезды находится жидкий «суп» из нейтронов, протонов и других частиц. Чтобы описать нейтронную звезду, ученые используют уравнение состояния, связывающее давление и плотность вещества. Существует множество вариантов возможных уравнений состояний, но ученые не знают, какие из них правильные, поэтому гравитационные наблюдения могут помочь разрешить этот вопрос. На данный момент наблюденный сигнал не дает однозначного ответа, но помогают дать интересные оценки на форму звезды (которая зависит от гравитационного притяжения ко второй звезде).

Интересным открытием оказалось, что наблюдавшийся короткий гамма-всплеск является самым близким к Земле, но в то же время слишком тусклым для такого расстояния. Ученые предположили несколько возможных объяснений: возможно, луч гамма-излучения был неравномерной яркости, или мы увидели только самый его край. В любом случае возникает вопрос: ранее астрономы не предполагали, что такие тусклые всплески могут быть расположены так близко, и могли ли они тогда пропустить такие же тусклые всплески, или же неправильно интерпретировать их как более далекие? Совместные наблюдения в гравитационном и электромагнитном диапазоне могут помочь дать ответ, но на данном уровне чувствительности детекторов такие наблюдения будут достаточно редкими - в среднем 0.1-1.4 в год.

Кроме гравитационного и электромагнитного излучения, нейтронные звезды излучают потоки нейтрино в процессе слияния. Детекторы нейтрино также работали над поиском этих потоков от события, но не зафиксировали ничего. В целом, этот результат был ожидаем - как и в случае гамма-всплеска, событие слишком тусклое (или мы наблюдаем его под большим углом), чтобы детекторы могли его увидеть.

Скорость гравитационных волн

Так как гравитационные волны и световой сигнал произошли от одного источника с очень большой вероятностью (5.3 sigma), и первый световой сигнал пришел через 1.7 секунд после гравитационного, мы можем ограничить скорость распространения гравитационных волн с очень большой точностью. Предполагая, что свет и гравитационные волны излучались одновременно, а задержка между сигналами произошла из-за того, что гравитация быстрее, можно получить верхнюю оценку. Нижнюю оценку можно получить из моделей слияния нейтронных звезд: предположить, что свет был испущен через 10 секунд после гравитационных волн (в этот момент уже все процессы точно должны были завершиться) и нагнал гравитационные волны к моменту достижения Земли. Как результат, скорость гравитации равна скорости света с огромной точностью

Для нижней оценки можно использовать и большую задержку между излучением, и даже предположить, что сначала был испущен световой сигнал, что понизит точность пропорционально. Но даже в этом случае оценка получается чрезвычайно точной.

Используя те же знания о задержке между сигналами можно значительно повысить точность оценок на лоренц-инвариантность (разности между поведением гравитации и света при преобразовании Лоренца) и принцип эквивалентности .

Ученые измерили постоянную Хаббла и другим образом - по наблюдению параметров реликтового излучения на телескопе Планк , и получили другое значение постоянной Хаббла, не согласующееся с измерениями SHoES. Это различие слишком велико, чтобы быть статистическим, но пока не известны причины расхождений оценок. Поэтому необходимо независимое измерение.


Распределение вероятности для постоянной Хаббла с использованием гравитационных волн (синий). Пунктиром обозначены интервалы 1σ и 2σ (68.3% и 95.4%). Для сравнения показаны интервалы 1σ и 2σ для предыдущих оценок: Планк (зеленый) и SHoES (оранжевый), которые не сходятся друг с другом.

Гравитационные волны в данном случае играют роль стандартных свечей (и называются стандартными сиренами). Наблюдая амплитуду сигнала на Земле и моделируя его амплитуду в источнике, можно оценить, насколько она уменьшилась, и узнать тем самым расстояние до источника - независимо от любых предположений на постоянную Хаббла или предыдущие измерения. Наблюдение светового сигнала позволило определить галактику, где располагалась пара нейтронных звезд, а скорость удаления этой галактики была хорошо известна по предыдущим измерениям. Отношение между скоростью и расстоянием и является постоянной Хаббла. Важно, что такая оценка совершенно независима от предыдущих оценок или космической шкалы расстояний.

Одного измерения оказалось недостаточно, чтобы разрешить загадку различия в оценках Планка и SHoES, но в целом оценка уже хорошо соответствует известным значениям. Учитывая, что предыдущие оценки основываются на статистике, собранной на протяжении многих лет, это очень значительный результат.

Немного о LIGO и глитчах



Верхняя панель показывает глитч в данных LIGO-Livingston, и также явно демонстрирует наличие чирпа. Нижняя панель показывает безразмерную амплитуду колебаний, ”strain" (величина, которой мы описываем величину сигнала в LIGO и Virgo) в момент глитча. Это короткий
(длится всего около 1/4 секунды), но очень сильный сигнал. Подавление уменьшает глитч до уровня оранжевой кривой, которая показывает уровень фонового шума, всегда присутствующего в детекторах LIGO.

Только один из детекторов LIGO увидел сигнал в автоматическом режиме, поскольку на детекторе в Ливингстоне в момент события произошел «глитч». Этим термином называют всплеск шума, похожий на хлопок статики в радиоприемнике. Хотя гравитационно волновой сигнал был очевидно заметен человеческому глазу, автоматика отсекает подобные данные. Поэтому понадобилась очистка сигнала от глитча, прежде чем данные могли быть использованы детектором. Глитчи появляются в детекторах все время - примерно раз в несколько часов. Ученые классифицируют их по форме и длительности и используют эти знания для улучшения детекторов. Вы можете помочь им в этом в проекте GravitySpy , где пользователи ищут и классифицируют глитчи в данных LIGO, чтобы помочь ученым.

Вопросы без ответов



Известные нам черные дыры, нейтронные звезды и их слияния. Есть область средних масс, о существовании компактных объектов с которыми мы ничего не знаем. Credit: LIGO-Virgo/Northwestern/Frank Elavsky

Мы зарегистрировали гравитационные волны от двух компактных объектов, и наблюдение электромагнитного излучения говорит о том, что один из них был нейтронной звездой. Но второй мог быть и черной дырой малой массы, и хотя ранее таких черных дыр никто не видел, теоретически они могут существовать. Из наблюдения GW170817 нельзя определить точно, было ли это столкновение двух нейтронных звезд, хотя это и более вероятно.

Второй любопытный момент: а чем стал этот объект после слияния? Он мог стать либо сверхмассивной нейтронной звездой (самой массивной из известных) или самой легкой из известных черных дыр. К сожалению, данных наблюдения недостаточно, чтобы ответить на этот вопрос.

Заключение

Наблюдение слияния нейтронных звезд в о всех диапазонах - потрясающе богатое на физику событие. Количество данных, полученных учеными только за эти два месяца позволило подготовить несколько десятков публикаций, и гораздо больше будет, когда данные станут общедоступными. Физика нейтронных звезд гораздо богаче и интереснее физики черных дыр - мы можем напрямую проверять физику сверхплотного состояния вещества, а также квантовую механику в условиях сильных гравитационных полей. Эта уникальная возможность может помочь нам наконец найти связь между общей теорией относительности и квантовой физикой, которая до сих пор ускользала от нас.

Это открытие еще раз показывает, насколько в современной физике важна совместная работа многих коллабораций из тысяч людей.

Reddit AMA

Традиционно на Reddit ученые из LIGO отвечают на вопросы пользователей, очень рекомендую!
Происходит это будет с 18 часов по Москве 17 и 18 октября. Ссылка на событие будет ко времени начала.
  • общая теория относительности
  • телескоп хаббл
  • телескоп планк
  • Добавить метки

    Результаты наблюдений могут в будущем пролить свет на загадку строения нейтронных звезд и образование тяжелых элементов во Вселенной

    Художественное изображение гравитационных волн, порожденных слиянием двух нейтронных звезд

    Изображение: R. Hurt/Caltech-JPL

    Москва. 16 октября. сайт - Ученые впервые в истории зафиксировали гравитационные волны от слияния двух нейтронных звезд - сверхплотных объектов массой с наше Солнце и размером с Москву, сообщает сайт N+1.

    Возникшие затем гамма-всплеск и вспышку килоновой наблюдали около 70 наземных и космических обсерваторий - они смогли увидеть предсказанный теоретиками процесс синтеза тяжелых элементов, в том числе золота и платины, и подтвердить правоту гипотез о природе загадочных коротких гамма-всплесков, сообщают пресс-служба коллаборации LIGO/Virgo, Европейской Южной обсерватории и обсерватории Лос-Кумбрес. Результаты наблюдений могут пролить свет на загадку строения нейтронных звезд и образование тяжелых элементов во Вселенной.

    Гравитационные волны - волны колебаний геометрии пространства-времени, существование которых было предсказано общей теорией относительности. Впервые об их достоверном обнаружении коллаборация LIGO сообщила в феврале 2016 года - спустя 100 лет после предсказаний Эйнштейна.

    Как сообщается, утром 17 августа 2017 года (в 8:41 по времени Восточного побережья США, когда в Москве было 15:41) автоматические системы на одном из двух детекторов гравитационно-волновой обсерватории LIGO зарегистрировали приход гравитационной волны из космоса. Сигнал получил обозначение GW170817, это был уже пятый случай фиксации гравитационных волн с 2015 года, с момента, когда они были впервые зарегистрированы. Всего за три дня до этого обсерватория LIGO впервые "услышала" гравитационную волну вместе с европейским проектом Virgo.

    Однако в этот раз уже через две секунды после гравитационного события космический телескоп Fermi зафиксировал вспышку гамма-излучения на южном небе. Почти в этот же момент вспышку увидела европейско-российская космическая обсерватория INTEGRAL.

    Автоматические системы анализа данных обсерватории LIGO пришли к выводу, что случайное совпадение этих двух событий крайне маловероятно. В ходе поиска дополнительной информации было обнаружено, что гравитационную волну увидел и второй детектор LIGO, а также европейская гравитационная обсерватория Virgo. Астрономы всего мира были подняты "по тревоге" - охоту на источник гравитационных волн и гамма-всплеска начали множество обсерваторий, в том числе Европейская Южная обсерватория и космический телескоп Hubble.

    Задача была непростой - комбинированные данные LIGO/Virgo, Fermi и INTEGRAL позволили очертить область площадью в 35 квадратных градусов - это примерная площадь нескольких сотен лунных дисков. Только через 11 часов небольшой телескоп Swope с метровым зеркалом, находящейся в Чили, сделал первый снимок предполагаемого источника - он выглядел как очень яркая звезда рядом с эллиптической галактикой NGC 4993 в созвездии Гидры. В течение последующих пяти дней яркость источника упала в 20 раз, а цвет постепенно смещался от синего к красному. Все это время за объектом наблюдали множество телескопов в диапазонах от рентгеновского до инфракрасного, пока в сентябре галактика не оказалась слишком близко к Солнцу, и стала недоступна для наблюдений.

    Ученые пришли к выводу, что источник вспышки находился в галактике NGC 4993 на расстоянии около 130 миллионов световых лет от Земли. Это невероятно близко, до сих пор гравитационные волны приходили к нам с расстояний в миллиарды световых лет. Благодаря этой близости мы и смогли их услышать. Источником волны было слияние двух объектов с массами в диапазоне от 1,1 до 1,6 масс Солнца - это могли быть только нейтронные звезды.

    Локализация источника гравитационных волн в галактике NGC 4993

    Сам всплеск "звучал" очень долго - около 100 секунд, давали всплески длительностью в доли секунды. Пара нейтронных звезд вращалась вокруг общего центра масс, постепенно теряя энергию в виде гравитационных волн и сближаясь. Когда расстояние между ними сократилось до 300 км, гравитационные волны стали достаточно мощными, чтобы попасть в зону чувствительности гравитационных детекторов LIGO/Virgo. Нейтронные звезды успели совершить 1,5 тысячи оборотов вокруг друг друга. В момент слияния двух нейтронных звезд в один компактный объект (нейтронную звезду или черную дыру) происходит мощная вспышка гамма-излучения.

    Такие гамма-вспышки астрономы называют короткими гамма-всплесками, гамма-телескопы фиксируют их примерно раз в неделю. Короткий гамма-всплеск от слияния нейтронных звезд, о котором сообщается, длился 1,7 секунды.

    Если природа длинных гамма-всплесков более понятна (их источники - вспышки сверхновых), то единства мнений насчет источников коротких всплесков не было. Существовала гипотеза, что их порождают слияния нейтронных звезд.

    Теперь ученые смогли впервые подтвердить эту гипотезу, поскольку благодаря гравитационным волнам мы знаем массу слившихся компонентов, что доказывает что это именно нейтронные звезды.

    "Десятилетия мы подозревали, что короткие гамма-всплески порождают слияния нейтронных звезд. Теперь, благодаря данным LIGO и Virgo об этом событии у нас есть ответ. Гравитационные волны говорят нам, что слившиеся объекты имели массы, соответствующие нейтронным звездам, а гамма-вспышка говорит, что эти объекты вряд ли могли быть черными дырами, поскольку столкновение черных дыр не должно порождать излучение", - говорит Джули МакЭнери, сотрудник проекта Fermi Центра космических полетов НАСА имени Годдарда.

    Источник золота и платины

    Кроме того, астрономы впервые получили однозначное подтверждение существования килоновых (или "макроновых") вспышек, которые примерно в 1 тыс. раз мощнее вспышек обычных новых. Теоретики предсказывали, что килоновые могут возникать при слиянии нейтронных звезд или нейтронной звезды и черной дыры.

    При этом запускается процесс синтеза тяжелых элементов, основанный на захвате ядрами нейтронов (r-процесс), в результате которого во Вселенной появились многие из тяжелых элементов, таких как золото, платина или уран.

    По подсчетам ученых, при одном взрыве килоновой может возникнуть огромное количество золота - до десяти масс Луны. До сих пор лишь единожды наблюдалось событие, которое могло быть взрывом килоновой.

    Теперь же астрономы смогли впервые наблюдать не только рождение килоновой, но и продукты ее "работы". Спектры, полученные при помощи телескопов Hubble и VLT (Very Large Telescope), показали наличие цезия, теллура, золота, платины и других тяжелых элементов, образованных при слиянии нейтронных звезд.

    Через 11 часов после столкновения температура килоновой составляла 8 тыс. градусов, а скорость ее расширения достигла около 100 тыс. километров в секунду, отмечает N+1 со ссылкой на данные Государственного астрономического института имени Штернберга (ГАИШ).

    В ESO сообщили, что наблюдение практически идеально совпало с прогнозом поведения двух нейтронных звезд при слиянии.

    "Пока данные, которые мы получили, великолепно согласуются с теорией. Это триумф теоретиков, подтверждение абсолютной реальности событий, зарегистрированных обсерваториями LIGO и VIrgo, и замечательное достижение ESO, которой удалось получить такие наблюдения килоновой", - говорит Стефано Ковино, первый автор одной из статей в Nature Astronomy.

    Так столкновение нейтронных звезд увидели астрономы

    У ученых пока нет ответа на вопрос о том, что осталось после слияния нейтронных звезд - это может быть как черная дыра, так и новая нейтронная звезда, кроме того, не вполне ясно, почему гамма-всплеск оказался относительно слабым.

    17 августа 2017 года лазерно-интерферометрическая гравитационно-волновая обсерватория LIGO и франко-итальянский детектор гравитационных волн VIRGO впервые зафиксировали гравитационные волны от столкновения двух нейтронных звезд. Примерно через две секунды после этого космический гамма-телескоп NASA «Fermi» и астрофизическая гамма-лаборатория ESA «INTEGRAL» наблюдали короткий гамма-всплеск GRB170817A в той же области неба.

    «Ученому редко выпадает случай стать свидетелем начала новой эры в науке. Это – один из таких случаев!» – сказала Елена Пиан из Астрофизического института Италии, автор одной из публикуемых в Nature статей.

    Что такое гравитационные волны?

    Гравитационные волны, создающиеся движущимися массами, являются маркерами самых жестоких событий во Вселенной и возникают при столкновении плотных объектов, таких как черные дыры или нейтронные звезды.

    Их существование было предсказано еще в 1916 году Альбертом Эйнштейном в Общей Теории Относительности. Однако, зафиксировать гравитационные волны удалось только спустя сто лет, поскольку только самые мощные из этих волн, обусловленные быстрыми изменениями скорости очень массивных объектов, могут быть зарегистрированы современными приемниками.

    До сегодняшнего дня было поймано 4 сигнала гравитационных волн: трижды LIGO в одиночку фиксировал «рябь» пространства-времени, а 14 сентября 2017 года впервые гравитационные волны были пойманы сразу тремя детекторами (двумя детекторами LIGO в США и одним детектор VIRGO в Европе).

    У четырех предыдущих событий есть одно общее – все они вызваны слиянием пар черных дыр, вследствие чего увидеть их источник невозможно. Теперь все изменилось.

    Как обсерватории по всему миру «ловили» источник гравитационных волн

    Совместная работа LIGO и VIRGO позволила позиционировать источник гравитационных волн в пределах обширного участка южного неба размером в несколько сотен дисков полной Луны, содержащего миллионы звезд. Более 70 обсерваторий по всему миру, а также космический телескоп NASA «Hubble» принялись наблюдать этот район неба в поисках новых источников излучения.

    Первое сообщение об обнаружении нового источника света поступило спустя 11 часов с метрового телескопа «Swope». Оказалось, что объект находился очень близко к линзовидной галактике NGC 4993 в созвездии Гидры. Почти в то же время тот же источник был зарегистрирован телескопом Европейской южной обсерватории ESO «VISTA» в инфракрасных лучах. По мере того, как ночь продвигалась по земному шару на запад, объект наблюдался на Гавайских островах телескопами «Pan-STARRS» и «Subaru», причем была отмечена его быстрая эволюция.

    Вспышка от столкновения двух нейтронных звезд в галактике NGC 4993 хорошо видна на снимке космического телескопа «Hubble». Наблюдения, проведенные с 22 по 28 августа 2017 года, показывают, как она постепенно исчезала. Credit: NASA/ESA

    Оценки расстояния до объекта, полученные как из гравитационно-волновых данных, так и из других наблюдений, дали согласующиеся результаты: GW170817 находится на том же расстоянии от Земли, что и галактика NGC 4993, то есть в 130 миллионах световых лет. Таким образом, это ближайший к нам из всех обнаруженных источников гравитационных волн и один из ближайших когда-либо наблюдавшихся источников гамма-всплесков.

    Загадочная килоновая

    После того, как массивная звезда взрывается в виде сверхновой, на ее месте остается сверхплотное сколлапсировавшее ядро: нейтронная звезда. Слияниями нейтронных звезд в основном объясняются и короткие гамма-всплески. Считается, что это событие сопровождается взрывом в тысячу раз более ярким, чем типичная новая – так называемой килоновой.

    Художественное представление столкновения двух нейтронных звезд в галактике NGC 4993, породившего вспышку килоновой и гравитационные волны. Credit: ESO/L. Calgada/M. Kornmesser

    «Это ни на что не похоже! Объект очень быстро стал невероятно ярким, а затем начал стремительно исчезать, переходя от синего цвета к красному. Это невероятно!» – рассказывает Райан Фоули из Калифорнийского университета в Санта-Крузе (США).

    Почти одновременная регистрация гравитационных волн и гамма-лучей от GW170817 породила надежду на то, что это и есть давно разыскиваемая килоновая. Подробные наблюдения на инструментах ESO и космическом телескопе «Hubble» действительно обнаружили у этого объекта свойства очень близкие к теоретическим предсказаниям, сделанным более 30 лет назад. Таким образом, получено первое наблюдательное подтверждение существования килоновых.

    Пока неясно, какой объект породило слияние двух нейтронных звезд: черную дыру или новую нейтронную звезду. Дальнейший анализ данных должен ответить на этот вопрос.

    В результате слияния двух нейтронных звезд и взрыва килоновой происходит выброс радиоактивных тяжелых химических элементов, разлетающихся со скоростью в одну пятую скорости света. В течение нескольких дней – быстрее, чем при любом другом звездном взрыве – цвет килоновой меняется от ярко-голубого к очень красному.

    «Данные, которые мы получили, великолепно согласуются с теорией. Это триумф теоретиков, подтверждение абсолютной реальности событий, зарегистрированных установками LIGO и VIRGO, и замечательное достижение ESO, которой удалось получить наблюдения килоновой», – рассказывает Стефано Ковино из Астрофизического института Италии, автор одной из публикуемых в Nature Astronomy статей.

    Некоторые из элементов, выбрасываемые в космос при слиянии двух нейтронных звезд. Credit: ESO/L. Calçada/M. Kornmesser

    Спектры, полученные инструментами на Очень большом телескопе ESO показывают присутствие цезия и теллура, выброшенных в пространство при слиянии нейтронных звезд. Эти и другие тяжелые элементы рассеиваются в космосе после взрывов килоновых. Таким образом, наблюдения указывают на формирование элементов тяжелее железа при ядерных реакциях в недрах сверхплотных звездных объектов. Этот процесс, называемый r-нуклеосинтезом, раньше был известен только в теории.

    Важность открытия

    Открытие ознаменовало рассвет новой эры в космологии: теперь мы можем не только слушать, но и видеть события, порождающие гравитационные волны! В краткосрочной перспективе анализ новых данных позволит ученым получить более точное представление о нейтронных звездах, а в будущем наблюдения подобных событий помогут объяснить продолжающееся расширение Вселенной, состав темной энергии, а также происхождение самых тяжелых элементов в космосе.

    Исследования, описывающие открытие, представлены серией статей в журналах Nature , Nature Astronomy и Astrophysical Journal Letters .

    МОСКВА, 16 октября. /ТАСС/. Детекторы LIGO (Laser Interferometric Gravitational Wave Observatory, США) и Virgo (аналогичная обсерватория в Италии) впервые зарегистрировали гравитационные волны от слияния двух нейтронных звезд. Об этом открытии объявлено в понедельник во время международной пресс-конференции, прошедшей одновременно в Москве, Вашингтоне и ряде городов в других странах.

    "Ученые впервые зафиксировали гравитационные волны от слияния двух нейтронных звезд, причем это явление наблюдали не только на лазерных интерферометрах, регистрирующих гравитационные волны, но и с помощью космических обсерваторий (INTEGRAL, Fermi) и наземных телескопов, регистрирующих электромагнитное излучение. В сумме это явление наблюдали около 70 наземных и космических обсерваторий по всему миру, в числе которых сеть роботов-телескопов МАСТЕР (МГУ им. М.В. Ломоносова)", - говорится в сообщении пресс-службы МГУ.

    Когда и как зарегистрировали

    Открытие, о котором ученые сообщили в понедельник, было сделано еще 17 августа. Тогда оба детектора LIGO зарегистрировали гравитационный сигнал, получивший название GW170817. Информация, предоставленная третьим детектором Virgo, позволила значительно улучшить локализацию космического события.

    Почти в то же время, примерно через две секунды после гравитационных волн, космический гамма-телескоп NASA Fermi и Международная орбитальная обсерватория гамма лучей (INTErnational Gamma-Ray Astrophysics Laboratory/INTEGRAL) обнаружили всплески гамма-лучей. В последующие дни ученые зарегистрировали электромагнитное излучение и в других диапазонах, включая рентгеновские, ультрафиолетовые, оптические, инфракрасные и радиоволны.

    Сигналы детекторов LIGO показали, что зарегистрированные гравитационные волны излучались двумя астрофизическими объектами, вращающимися друг относительно друга и расположенными на относительно близком расстоянии - около 130 млн световых лет - от Земли. Оказалось, что объекты были менее массивными, чем ранее обнаруженные LIGO и Virgo двойные черные дыры. Согласно вычислениям, их массы находились в диапазоне от 1,1 до 1,6 массы Солнца, что попадает в область масс нейтронных звезд, самых маленьких и самых плотных среди звезд. Их типичный радиус составляет всего 10-20 км.

    Если сигнал от сливающихся двойных черных дыр обычно находился в диапазоне чувствительности детекторов LIGO в течение долей секунды, то сигнал, зарегистрированный 17 августа, длился около 100 секунд. Спустя примерно две секунды после слияния звезд произошла вспышка гамма-излучения, которая была зарегистрирована космическими гамма-телескопами.

    Быстрое обнаружение гравитационных волн командой LIGO-Virgo в сочетании с обнаружением гамма-излучения позволило запустить наблюдение оптическими и радиотелескопами по всему миру.

    Получив координаты, несколько обсерваторий уже через несколько часов смогли начать поиск в области неба, где предположительно произошло событие. Новая светлая точка, напоминающая новую звезду, была обнаружена оптическими телескопами, и в итоге около 70 обсерваторий на земле и в космосе наблюдали это событие в различных диапазонах длин волн.

    В последующие дни после столкновения было зарегистрировано электромагнитное излучение в рентгеновском, ультрафиолетовом, оптическом, инфракрасном и радиоволновом диапазонах.

    "Впервые, в отличие от "одиноких" слияний черных дыр, зарегистрировано "компанейское" событие не только гравитационными детекторами, но еще и оптическими и нейтринными телескопами. Это первый такой хоровод наблюдений вокруг одного события", - рассказал профессор физического факультета МГУ Сергей Вятчанин, который входит в группу российских ученых, участвовавших в наблюдении за явлением, под руководством профессора физического факультета МГУ Валерия Митрофанова.

    Теоретики предсказывают, что при столкновении нейтронных звезд должны излучаться гравитационные волны и гамма-лучи, а также извергаться мощные струи вещества, сопровождающиеся излучением электромагнитных волн в широком частотном диапазоне.

    Обнаруженный гамма-всплеск является так называемым коротким гамма-всплеском. Ранее ученые лишь предсказывали, что короткие гамма-всплески генерируются при слиянии нейтронных звезд, а теперь это подтверждено наблюдениями. Но, несмотря на то, что источник обнаруженного короткого гамма-всплеска был одним из самых близких к Земле, видимых до сих пор, сам всплеск был неожиданно слаб для такого расстояния. Теперь ученым предстоит найти объяснение этому факту.

    Со скоростью света

    В момент столкновения основная часть двух нейтронных звезд слилась в один ультраплотный объект, испускающий гамма-лучи. Первые измерения гамма-излучения в сочетании с детектированием гравитационных волн подтверждают предсказание общей теории относительности Эйнштейна, а именно, что гравитационные волны распространяются со скоростью света.

    "YouTube/Georgia Tech"

    "Во всех предыдущих случаях источником гравитационных волн были сливающиеся черные дыры. Как это ни парадоксально, черные дыры - это очень простые объекты, состоящие исключительно из искривленного пространства и поэтому полностью описывающиеся хорошо известными законами общей теории относительности. В то же время, структура нейтронных звезд и, в частности, уравнение состояния нейтронной материи до сих пор точно неизвестны. Поэтому изучение сигналов от сливающихся нейтронных звезд позволит получить огромное количество новой информации также и о свойствах сверхплотной материи в экстремальных условиях", - сказал профессор физического факультета МГУ Фарит Халили, который так же входит в группу Митрофанова.

    Фабрика тяжелых элементов

    Теоретики предсказали, что в результате слияния образуется "килоновая". Это явление, при котором остающийся от столкновения нейтронных звезд материал ярко светится и выбрасывается из области столкновения далеко в космос. При этом возникают процессы, в результате которых создаются тяжелые элементы, такие как свинец и золото. Наблюдение после свечения слияния нейтронных звезд позволяют получать дополнительную информацию о различных стадиях этого слияния, о взаимодействии образовавшегося объекта с окружающей средой и о процессах, которые производят самые тяжелые элементы во Вселенной.

    "В процессе слияния зафиксировано образование тяжелых элементов. Поэтому можно говорить даже о галактической фабрике по производству тяжелых элементов, в том числе золота - ведь именно этот металл больше всего интересует землян. Ученые начинают предлагать модели, которые объяснили бы наблюдаемые параметры этого слияния", - отметил Вятчанин.

    О коллаборации LIGO-LSC

    Научная коллаборация LIGO-LSC (LIGO Scientific Collaboration) объединяет более 1200 ученых из 100 институтов различных стран. Обсерватория LIGO построена и эксплуатируется Калифорнийским и Массачусетским технологическими институтами. Партнером LIGO является коллаборация Virgo, в которой работают 280 европейских ученых и инженеров из 20 исследовательских групп. Детектор Virgo находится недалеко от Пизы (Италия).

    В исследованиях LIGO Scientific Collaboration принимают участие два научных коллектива из России: группа физического факультета Московского государственного университета имени М.В. Ломоносова и группа Института прикладной физики РАН (Нижний Новгород). Исследования поддерживаются Российским фондом фундаментальных исследований и Российским научным фондом.

    Детекторы LIGO в 2015 году впервые зарегистрировали гравитационные волны от столкновения черных дыр, а в феврале 2016 года об открытии было объявлено на пресс-конференции. В 2017 году лауреатами Нобелевской премии по физике стали американские физики Райнер Вайсс, Кип Торн и Берри Бэриш за решающий вклад в проект LIGO, а также "наблюдение за гравитационными волнами".

    mob_info