Набор демонстрационный "молекулярная физика и тепловые явления". Молекулярная физика. Тепловые явления Молекулярная физика и тепловые явления методическое руководство

Размер: px

Начинать показ со страницы:

Транскрипт

1 Государственное образовательное учреждение лицей 1547 Национальный исследовательский ядерный университет «МИФИ» Физическая лаборатория описание лабораторных работ для 8, 9,10 и 11 классов лицея. Раздел Молекулярная Физика. Тепловые явления. Москва 2010г. Под редакцией Г.С. Богданова

2 Оглавление 3 НАБЛЮДЕНИЕ ЗА ОТВЕРДЕВАНИЕМ АМОРФНОГО ВЕЩЕСТВА. ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ КРИСТАЛЛИЗАЦИИ ВЕЩЕСТВА. 4 ИССЛЕДОВАНИЕ СВОЙСТВ ПЕРЕОХЛАЖДЕННОЙ ЖИДКОСТИ 5 ИССЛЕДОВАНИЕ ИЗОХОРНОГО ПРОЦЕССА 7 ИССЛЕДОВАНИЕ ИЗОТЕРМИЧЕСКОГО ПРОЦЕССА. 9 ИЗУЧЕНИЕ ИЗОБАРНОГО ПРОЦЕССА 10 2

3 1.НАБЛЮДЕНИЕ ЗА ОТВЕРДЕВАНИЕМ АМОРФНОГО ВЕЩЕСТВА. Оборудование: пробирка с желтым веществом, лабораторный термометр, штатив лабораторный с муфтой и лапкой, сосуд с горячей водой (один на класс), наручные часы. Содержание и метод выполнения работы. Аморфные вещества не имеют определенной температуры плавления. По мере нагревания они постепенно размягчаются, превращаясь в жидкость все менее и менее вязкую. При охлаждении эта жидкость непрерывно увеличивает свою вязкость, пока не застынет в аморфно-твердое тело. Объясняется это особенностями строения таких веществ. В аморфных веществах молекулы расположены также беспорядочно, как и в жидкостях, и поэтому их переход в жидкое состояние и обратно не сопровождается изменением молекулярного строения вещества, а заключается только в непрерывном изменении подвижности молекул. Таким образом, аморфно-твердое состояние и жидкое состояние не представляют собой двух различных состояний вещества. Тело из аморфного вещества может формально соответствовать признакам, характерным для твердых тел- сохранять свою форму и объем, но являться при этом жидкостью, в которой подвижность молекул значительно снизилась из-за охлаждения. В том, что аморфные вещества, в отличие от кристаллических, не имеют определенной температуры плавления и кристаллизации, можно убедиться, сравнивая графики изменения температуры со временем, полушечные при наблюдении за охлаждением кристаллического и аморфного веществ. Пробирку с аморфным веществом желтого цвета в присутствии учителя погружают наполовину в сосуд с горячей водой с температурой С. После того, как вещество достаточно прогреется, убеждаются в том, что в пробирке жидкость. В нее погружают термометр и с интервалом времени в одну минуту записывают его показания. Когда температура уменьшится до 40 С, рассматривают вещество в пробирке и убеждаются в том, что оно затвердело. Опыт прекращают. Строят график зависимости температуры вещества от времени и сравнивают его с графиком, построенным при выполнении работы «Измерение температуры кристаллизации вещества». Убеждаются в отсутствии процесса кристаллизации при переходе аморфного тела из жидкого состояния в твердое. Порядок выполнения работы. 1. Подготовьте таблицу для записи результатов измерений: Время, мин t, C 2. Определите цену деления шкалы термометра. 3. Пробирку с желтым веществом опустите в горячую воду и растопите его. 4. Убедитесь, что в пробирке находится жидкость. При наклоне пробирки в разные стороны видно, что форма вещества в ней меняется в зависимости от наклона, то есть не сохраняется, что и является одним из отличий жидкостей от твердых тел. 5. Поместите в пробирку термометр и закрепите ее в лапке штатива. 6. После того, как показания термометра установятся, начинайте регистрировать температуру с интервалом в одну минуту. 7. Когда температура опустится до 40 С, освободите пробирку из лапки штатива и, наклоняя ее в разные стороны, убедитесь, что вещество застыло. 8. По данным измерений постройте график зависимости температуры вещества в пробирке от времени. При возможности сравните его с графиком, построенным при выполнении работы "Измерение температуры кристаллизации вещества". 9. С помощью графика докажите, что в пробирке находилось аморфное вещество. Контрольные вопросы. 1.Чем отличаются графики отвердевания кристаллического и аморфного веществ? 2.В чем внешнее отличие твердых тел от жидкостей? 3

4 2. ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ КРИСТАЛЛИЗАЦИИ ВЕЩЕСТВА. Оборудование: пробирка с зеленым веществом, лабораторный термометр, стакан с горячей водой, наручные часы. Содержание и метод выполнения работы. В кристаллическом веществе атомы и молекулы образуют упорядоченную упаковку и совершают малые колебания около своих положений равновесия. По мере нагревания тела скорость колеблющихся частиц возрастает вместе с размахом колебаний. Увеличение скорости движения частиц с возрастанием температуры составляет один из основных законов природы, который относится к веществу в любом состоянии - твердом, жидком или газообразном. При определенной температуре колебания становятся столь энергичными, что упорядоченное расположение частиц становится невозможным -кристалл плавится. С началом плавления подводимое тепло идет уже не на увеличение скорости частиц, а на разрушение кристаллической решетки. Поэтому подъем температуры приостанавливается. Последующее нагревание -это увеличение скорости частиц жидкости. В случае кристаллизации из расплава вышеописанные явления наблюдаются в обратном порядке: по мере охлаждения жидкости ее частицы замедляют свое хаотическое движение; с понижением температуры до определенного значения, частицы движутся уже столь медленно, что некоторые из них под действием сил притяжения начинают пристраиваться одна к другой, образуя кристаллические зародыши. Пока все вещество не закристаллизуется, температура останется постоянной. Эта температура, как правило, та же, что и температура плавления. После того, как все вещество перейдет в твердое состояние, температура опять начинает понижаться, что соответствует процессу охлаждения твердого тела. Таким образом, температуру кристаллизации вещества можно определить, построив график зависимости температуры от времени. Из изложенного выше следует, что этот график будет иметь характерный участок в виде отрезка, параллельного оси времени. Температура, соответствующая этому участку, и будет температурой кристаллизации данного вещества. Порядок выполнения работы. 1. Подготовьте таблицу для записи результатов измерений: Время, мин t, C 2. Опустите пробирку с исследуемым веществом в присутствии учителя в сосуд с водой при температуре С и наблюдайте за тем, как вещество плавится. 3. После того, как все вещество расплавится, перенесите пробирку в стакан, куда налито около 150 мл горячей воды, и поместите в расплавленное вещество термометр. 4. С момента, когда температура вещества начнет понижаться, записывайте показания термометра с интервалом в 1 минуту. 5. Продолжая записывать показания термометра, пронаблюдайте этап перехода вещества в твердое состояние. 6. При охлаждении до 45 С прекратите измерения. По полученным данным постройте график зависимости температуры от времени. 7. По графику определите температуру кристаллизации вещества и время, в течение которого продолжалась кристаллизация вещества. Контрольные вопросы. 1. Чем отличаются графики зависимости температуры от времени при отвердевании кристаллических и аморфных веществ? 2. Как по графику изменения температуры вещества при нагревании от времени определить температуру плавления кристаллического тела? Дополнительное задание. 1. Налейте в сосуд около 400 мл горячей воды и погрузите в нее пробирку с затвердевшим кристаллическим веществом, куда ранее был вплавлен термометр. 2. Записывая показания термометра с интервалом в 1 минуту, пронаблюдайте за изменением состояния вещества при его нагревании до 70 С. 3. По данным измерений постройте график зависимости температуры вещества от времени и определите по нему температуру плавления. 4. Сопоставьте полученные значения температур плавления и кристаллизации вещества. 4

5 3. ИССЛЕДОВАНИЕ СВОЙСТВ ПЕРЕОХЛАЖДЕННОЙ ЖИДКОСТИ. Оборудование: пробирка, розовое вещество в пакете, лабораторный термометр, сосуд с горячей водой (один на класс), стеклянный стакан, наручные часы. Содержание и метод выполнения работы. Если кристаллическое вещество, находящееся в жидком состоянии, охлаждать, то в момент, когда его температура опустится до температуры плавления, должна начаться кристаллизация. Однако при достаточно быстром охлаждении жидкости кристаллизация не всегда успевает произойти и вещество оказывается при температуре, которая ниже температуры плавления, сохраняя свое жидкое состояние. Это явление называют переохлаждением жидкости. В различных жидкостях переохлаждение достигается неодинаково легко. Некоторые жидкости могут переохлаждаться на десятки градусов ниже своей температуры кристаллизации, другие кристаллизуются уже при самом незначительном переохлаждении. Состояние переохлажденной жидкости неустойчиво, также как состояние пересыщенного пара или перегретой жидкости. Некоторые жидкости в переохлажденном состоянии достаточно встряхнуть, чтобы вызвать быструю кристаллизацию. Переохлажденная жидкость может закристаллизоваться и при внесении в нее кристалла того же вещества. Из веществ, легко сохраняющихся в переохлажденном состоянии, можно назвать гипосульфит, салол, ванилин. Если переохлажденная жидкость начинает кристаллизоваться, имея незначительный теплообмен с окружающими телами, то выделяющаяся при этом энергия нагревает образующуюся смесь из кристаллов и жидкости. При не слишком сильном переохлаждении, то есть когда температура жидкости на момент кристаллизации оказалась не на много ниже температуры плавления, выделяющаяся теплота может разогреть всю систему до температуры плавления, после чего темп кристаллизации замедлится и будет зависеть от того, с какой скоростью выделяющееся тепло станет поглощаться окружающими телами. Целью работы является построение графика зависимости температуры вещества от времени, определение по нему температуры кристаллизации, наблюдение за ростом кристаллов в переохлажденной жидкости. Объектом изучения является розовое вещество в пробирке. В присутствии учителя пробирку погружают наполовину в горячую воду с температурой С. Вещество быстро расплавится. Пробирку переносят в стеклянный стакан без воды или зажимают в лапке штатива, вставляют в нее лабораторный термометр и с интервалом в одну минуту записывают его показания. Чтобы не вызвать преждевременной кристаллизации, стакан с пробиркой надо предохранять от толчков. Термометр в жидкости тоже должен находиться неподвижно. Когда температура опустится до 35 С, термометр несколько раз поднимают и опускают внутри жидкости. Этого воздействия оказывается достаточно, чтобы начался процесс кристаллизации. Продолжая измерять температуру, наблюдают за образованием кристаллов. Опыт заканчивают после того, как вещество, закристаллизовавшись, начнет остывать уже как твердое тело. Порядок выполнения работы. 1.Подготовьте таблицу для записи результатов измерений: Время, мин t, C 2.Определите цену деления шкалы термометра. 3.Разомните вещество в пакетике и пересыпьте его в пробирку. 4.Пробирку с веществом поместите в сосуд с горячей водой. Когда вещество полностью расплавится, перенесите пробирку в стеклянный стакан без воды и поместите в нее термометр. 5. После того, как показания термометра установятся, начинайте записывать его показания с интервалом в одну минуту. 6. Когда температура опустится до 35 С, помешайте термометром жидкость в пробирке, стараясь не повредить его кончик. 7.При образовании первых кристаллов обратите внимание на их форму и скорость роста. 8.Постройте график зависимости температуры вещества от времени. 9. По графику определите: а) температуру кристаллизации вещества, б) продолжительность времени пребывания вещества в состоянии переохлажденной жидкости, 5

6 в) продолжительность времени кристаллизации вещества. 10. Окончив работу, вещество вновь расплавьте, охладите и перелейте в пакетик. Внимание! Вещество, оставленное в пробирке, при длительном хранении может привести к ее растрескиванию. Контрольные вопросы. 1. Какое состояние вещества называют переохлажденной жидкостью? 2. Как вещество можно вывести из состояния переохлажденной жидкости? 6

7 4.ИССЛЕДОВАНИЕ ИЗОХОРНОГО ПРОЦЕССА Оборудование: прозрачная трубка с кранами, манометрическая трубка, измерительная лента, штатив с лапкой, внешний стакан калориметра, термометр лабораторный, мерный цилиндр, сосуд с теплой водой. Содержание и метод выполнения работы Целью работы является исследование зависимости давления газа от температуры при его изохорном охлаждении. Из закона Шарля следует, что если объем определенного количества газа не изменяется, то изменение его давления и температуры удовлетворяет условию: Р 1 /Т 2 = Р2/Т2 (1), где P 1 и Р 2 - давление газа в исходном и конечном состояниях, a T 1 и Т 2 - температура в этих состояниях. В начале эксперимента определяют давление и температуру газа в нагретом состоянии. Затем его охлаждают при неизменном объеме и вновь определяют давление и температуру. После этого проверяют, насколько изменение этих параметров соответствует равенству (1). Исследуемым газом является воздух, находящийся внутри прозрачной трубки. Чтобы его нагреть трубку укладывают плотно виток к витку в стакан калориметра. Перед этим один из кранов закрывают. Укладку начинают с того конца, на котором находится закрытый кран, и проводят так, чтобы конец с открытым краном оказался сверху. Затем в стакан наливают теплой воды. Уровень воды должен быть выше открытого крана не более чем на 5-10 мм. Воздух в шланге при нагревании станет расширяться и из крана начнут выходить пузырьки. Когда температуры воздуха и воды сравняются, расширение прекратится и пузырьки перестанут образовываться. После отделения последнего пузырька кран закрывают. Состояние воздуха в шланге в этот момент принимают за исходное и приступают к определению его параметров - температуры и давления. Температуру определяют термометром по температуре воды, а давление по показанию классного барометра - анероида. Такой способ измерения давления возможен по следующим соображениям. Пузырьки образуются до тех пор, пока давление воздуха в трубке не станет равным сумме давления атмосферы и столба воды над краном. Но так как уровень воды над краном по условию проведения опыта составляет всего несколько миллиметров, давлением водяного столба можно пренебречь по сравнению с давлением атмосферы. Исходя из этого, можно считать, что в исходном состоянии давление воздуха в трубке равно атмосферному давлению. Измерив исходные параметры воздуха, его переводят в другое состояние путем охлаждения до комнатной температуры. Трубку извлекают из калориметра и в виде бухты вешают на лапку штатива. Лапка штатива предварительно закрепляется на стержне на высоте около 35 см от поверхности стола. Под лапку ставят мерный цилиндр, в который налито мл воды. Термометр также вынимают из калориметра. Затем один из кранов соединяют с манометрической трубкой. Делается это в следующей последовательности. Свободный конец трубки погружают до дна в мерный цилиндр. Верхнюю часть трубки слегка зажимают в лапке штатива, но так чтобы внутренний канал не оказался полностью перекрытым. Еще раз проверяют, чтобы нижний конец трубки был бы погружен в воду. Только после этих операций трубку с помощью соединительного патрубка соединяют с краном. При контакте с более холодным воздухом классного помещения воздух в большой трубке охлаждается, его давление падает, но объем остается постоянным. Если открыть кран, то на концах манометрической трубки возникнет разность давлений и вода из сосуда начнет втягиваться вверх по трубке до тех пор, пока давление столба воды в ней и давление воздуха в большой трубке не уравновесят атмосферного давления. то есть пока не нас тупит равенство: Р ат = Р 2 + Р в, где Р В - давление в трубке, а Р В - давление столба воды в манометрической трубке. Отсюда Р 2 = Р ат - Р в. По высоте водяного столба определяют его давление и, зная давление атмосферы, вычисляют давление в большой трубке после охлаждения P 2. Температура в трубке в этот момент равна температуре воздуха в классе и определяется термометром. Получив значения P 1, Р 2, Т 1 и Т 2 находят отношения давления воздуха к его температуре в нагретом и охлажденном состоянии и проверяют насколько выполняется равенство (1) в условиях проведенного эксперимента. 7

8 Порядок выполнения работы 1. Подготовьте таблицу для записи результатов измерений и вычислений: t 1, С Т 1, К Р 2, Па t 2, С Т 2, К h, мм Р В, Па Р 2, Па Р 1 /T 1 Р 2 /Т 2 2.По показанию термометра определите температуру воздуха в классе t 2. 3.Уложите трубку во внешний стакан калориметра. 4.Заполните стакан теплой водой так, чтобы открытый кран оказался бы погруженным не более чем на 5-10 мм. 5.По выделению пузырьков определите момент выравнивания температур воды и воздуха в трубке. 6.По температуре воды определите температуру в трубке t 1. 7.С помощью барометра - анероида определите давление воздуха в трубке Р 1 = Р ат. 8.Закройте кран, извлеките трубку из стакана и поместите ее на штатив как сказано выше. 9.Присоедините к крану манометрическую трубку, выполняя последовательность действий, изложенную в предыдущем разделе. 9. Плавно откройте кран и наблюдайте за поднятием уровня воды в манометрической трубке. В момент, когда температуры воздуха в большой трубке и в комнате станут одинаковыми, поднятие уровня воды прекратится. Измерьте после этого разность уровней воды в трубке и в мерном цилиндре - h. 11.Вычислите величину давления водяного столба: Р В = ρgh, где ρ - плотность воды, g - ускорение свободного падения, h - разность уровней. 12.Вычислите давление воздуха в трубке после охлаждения Р 2 = P ат - Р В 13.Переведите полученные значения температуры в градусы шкалы Кельвина Т = t Вычислите отношения P 1 /T 1 и Р 2 /Т Сделайте вывод о том, насколько полученный результат соответствует формуле (1). Укажите возможные причины расхождения экспериментальных данных с теорией. Контрольные вопросы 1.Почему охлаждение воздуха в проведенном опыте можно считать изохорным? 2.Какие условия должны выполняться, чтобы изменения параметров газа соответствовали закону Шарля 8

9 5. ИССЛЕДОВАНИЕ ИЗОТЕРМИЧЕСКОГО ПРОЦЕССА. Оборудование: прозрачная трубка с кранами на концах, мерный цилиндр, измерительная лента. Содержание и метод выполнения работы. Целью работы является проверка соотношения между объемом и давлением определенного количества газа при его изотермическом сжатии. В соответствии с законом Бойля-Мариотта это соотношение должно иметь вид: V 1 P 1 = V 2 P 2 (1), где V 1 и V 2 - объемы, занимаемые газом соответственно до и после сжатия, а P 1 и Р 2 - его давления. Объектом изучения в работе является воздух, находящийся внутри прозрачной трубки. До сжатия он имеет следующие параметры. Давление равно атмосферному. Объем равен объему внутренней полости трубки. Температура соответствует температуре воздуха в помещении класса. Для сжатия воздуха в трубке один из кранов закрывают. Второй кран оставляют открытым. Конец трубки с открытым краном погружают до дна мерного цилиндра, который предварительно заполняют водой комнатной температуры, недолив до края мм. Через открытый кран в трубку заходит вода и сжимает воздух до тех пор, пока его давление не сравняется с внешним давлением. Таким образом, после сжатия параметры воздуха окажутся следующими. Объем будет равен объему внутренней полости за вычетом объема воды, вошедшей в трубку. Давление возрастет на величину гидростатического давления столба воды в цилиндре. Температура не изменится. Объем внутренней полости трубки определяется произведением площади ее поперечного сечения на длину. Поскольку поперечное сечение трубки одинаково по всей длине, объем воздуха удобно измерять в условных единицах. За условную единицу принимают единицу длины воздушного столба. Итак, в исходном состоянии давление определяется по показаниям барометра - анероида, а объем измерительной лентой по длине внутренней полости. Для измерения давления во втором состоянии измеряют разницу уровней воды в мерном цилиндре и в трубке - h. По формуле для расчета гидростатического давления жидкости вычисляют давление столба воды: Р в = ρgh, где ρ - плотность воды. Давление воздуха во втором состоянии будет равно сумме атмосферного и гидростатического давлений. Для определения объема воздуха во втором состоянии измеряют длину столба воды, вошедшей в трубку. Из измеренной ранее длины трубки вычитают длину столба воды. Завершив измерения, находят произведения давления на объем воздуха в первом и втором состояниях. Сравнивая полученные числа, делают вывод о справедливости закона Бойля - Мариотта. Порядок выполнения работы. 1. Подготовьте таблицу для записи результатов измерений и вычислений: l 1, мм Р 1, Па Δl, мм l 2, мм h, мм Р В, Па Р 2, Па l 1 P 1 l 2 P 2 2. Измерьте длину воздушного столба в трубке l Закройте один кран и погрузите конец трубки с открытым краном в мерный цилиндр до дна. 4. Измерьте длину столба воды, вошедшей в трубку - Δl. 5. Измерьте разницу уровней воды в мерном цилиндре и в трубке - h. 6. Вычислите длину воздушного столба в трубке после сжатия 1 2 = Δl. 7. Вычислите гидростатической давление воды Р = ρgh. 8. Вычислите давление воздуха в трубке после сжатия Р 2 = P 1 + Р в. 9. Вычислите произведения l 1 P 1 и 1 2 Р 2 и сделайте вывод о том, насколько точно изменение параметров газа в проделанном опыте соответствует закону Бойля-Мариотта. 10. Укажите причины, повлиявшие на точность полученных результатов. Контрольные вопросы. 1. Почему процесс сжатия воздуха в данной работе можно считать изобарным? 2. Какие условия должны выполняться, чтобы, изменения параметров газа соответствовали закону Бойля-Мариотта? 9

10 6.ИЗУЧЕНИЕ ИЗОБАРНОГО ПРОЦЕССА Оборудование: прозрачная трубка с двумя кранами на концах, лабораторный термометр, измерительная лента, внешний стакан калориметра, сосуд с теплой водой, сосуд с холодной водой. Содержание и метод выполнения работы Целью работы является проверка соотношения между изменением объема и температуры определенного количества газа при его изобарном охлаждении. В соответствии с законом Гей-Люссака это соотношение должно иметь вид: V 1 /T 1 = V 2 /T 2 (1), где V 1 и V 2 -объемы, занимаемые данной массой газа соответственно до и после охлаждения, а T 1 и Т 2 - его температуры. Исследуемым газом в данной работе является воздух, находящийся внутри прозрачной трубки. Для изоляции внутренней полости трубки от внешней среды на концах закреплены специальные краны. Измерения объема и температуры теплого и холодного воздуха внутри трубки проводят в следующем порядке. Трубку плотно, виток к витку, укладывают внутрь стакана калориметра. Кран, который расположится при этом вблизи дна, предварительно закрывают. Верхний кран оставляют открытым. Затем в калориметр наливают нагретую до С воду. Воду заливают так, чтобы открытый кран оказался бы погруженным в нее не более чем на 5-10мм. По мере прогрева объем воздуха в трубке будет возрастать и из открытого крана станут выходить пузырьки. В момент, когда температура воздуха сравняется с температурой теплой воды, выделение пузырьков прекратится. Это состояние воздуха в трубке принимают за исходное. Температуру воздуха в исходном состоянии Т 1 можно определить, если измерить температуру воды в стакане. Его объем V 1 равен объему внутренней полости трубки. После измерения температуры теплой воды воздух переводят в состояние с другими параметрами. Для этого закрывают кран, теплую воду сливают и заполняют стакан холодной водой, следя за тем, чтобы ее уровень над верхним краном оказался таким же, как в первой части опыта. После этого кран опять открывают. При охлаждении объем воздуха уменьшится, и через открытый кран в трубку поступит некоторое количество воды. Когда температуры воды и воздуха опять станут одинаковыми (через 1-2 минуты), приступают к определению параметров газа в новом состоянии. Температуру воздуха вновь определяют по температуре воды. Чтобы определить его объем после охлаждения, закрывают верхний кран, трубку извлекают из калориметра и, удерживая вертикально, резко встряхивают несколько раз. При этом капли воды, попавшие внутрь, сольются и образуют неразрывный столбик. Измерив объем этого водяного столба и вычтя его из внутреннего объема трубки, узнают объем воздуха в конечном состоянии. Измерение объемов в этой работе удобно проводить в условных единицах по длине воздушного или водяного столба: внутренняя полость трубки имеет форму цилиндра и ее объем V = S l, но площадь поперечного сечения S в ходе опыта не меняется, и, чтобы не измерять эту величину, которая после подстановки в равенство (1) все равно сократится, объем выражают в единицах длины (см. рисунки 1 и 2). Давление воздуха в трубке в первой и второй части опыта равнялось сумме атмосферного давления и давления небольшого столба воды над открытым краном. Поскольку уровень теплой и холодной воды не менялся, то эта сумма в ходе опыта не менялась, а значит и давление воздуха в трубке при его охлаждении оставалось постоянным, то есть процесс протекал изобарически. В завершении работы сравнивают отношения объема воздуха к его температуре до и после охлаждения. 10

11 Порядок выполнения работы 1.Подготовьте таблицу для записи результатов измерений и вычислений: l 1, см t 1, C T 1, K Δl, см l 2, см t 2, C T 2, K l 1 /T 1 l 2 /T 2 2.Измерьте длину воздушного столба в трубке l 1 (рис. 1). 3.Закройте один кран и уложите трубку виток к витку в стакан калориметра. Кран на верхнем конце оставьте открытым. 4.Заполните стакан теплой водой и поместите в него термометр. 5.Наблюдайте за выделением пузырьков воздуха из открытого крана. Как только оно прекратится, определите и запишите показание термометра t 1 (С). 6.Закройте кран, слейте теплую воду, заполните стакан холодной водой до прежнего уровня и снова откройте кран. 7.Выждав полторы - две минуты, определите и запишите показание термометра t 2 (С). 8.Закройте кран, слейте воду, извлеките шланг из стакана, встряхните его и измерьте длину столба воды в нем Δl (рис. 2). 9.Вычислите длину столба охлажденного воздуха: l 2 = l 1 - Δl. 10.Переведите записанные показания термометра в градусы Кельвина: Т = t Вычислите отношения l 1 /T 1 и l 2 /T 1 и сделайте вывод о том, насколько точно изменение параметров газа в проделанном опыте соответствует закону Гей-Люссака. 12.Укажите причины, повлиявшие на точность полученных результатов. Контрольные вопросы 1. Почему процесс охлаждения воздуха в данной работе можно считать изобарным? 2. Какие условия должны выполняться, чтобы, определяя параметры газа, можно было воспользоваться законом Гей-Люссака? 11


Термодинамика и молекулярная физика 1. При температуре 250 K и давлении плотность газа равна Какова молярная масса этого газа? Ответ приведите в кг/моль с точностью до десятитысячных. 2. Воздух охлаждали

Занятие 12 Молекулярно-кинетическая теория Задача 1 Из контейнера с твёрдым литием изъяли 4 моль этого вещества. Определите на сколько примерно уменьшилось число атомов лития в контейнере и впишите недостающие

4-1 IV.С.1 Средняя квадратичная скорость некоторого газа при нормальных условиях равна 480 м/с. Сколько молекул содержит 1 г этого газа? IV.С.2 Два одинаковых сосуда, содержащих углекислый газ при 320

«МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ». Основные положения МКТ (молекулярно-кинетической теории): Все тела состоят из молекул; Молекулы движутся (беспорядочно, хаотически броуновское движение); Молекулы взаимодействуют

Задание 1 (5 минут) В сосуде с водой плавает опрокинутая вверх дном кастрюля Будет ли изменяться уровень воды в кастрюле с изменением температуры окружающего воздуха? (Тепловым расширением воды, кастрюли

Ярославский государственный педагогический университет им. К. Д. Ушинского Кафедра общей физики Лаборатория молекулярной физики Лабораторная работа 6 Определение отношения C p /C методом V Клемана-Дезорма

Работа. 0 ИССЛЕДОВАНИЕ ПЛАВЛЕНИЯ И КРИСТАЛЛИЗАЦИИ МЕТАЛЛА Задача. Получить диаграмму охлаждения и кристаллизации металла.. По результатам п. найти температуру и удельную теплоту плавления (кристаллизации)

Отложенные задания (86) График зависимости давления от объема для циклического процесса изображен на рисунке. В этом процессе газ 1) совершает положительную работу 2) совершает отрицательную работу 3)

Методические указания к выполнению лабораторной работы.. ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА ДАВЛЕНИЯ ВОЗДУХА ПРИ ПОМОЩИ ГАЗОВОГО ТЕРМОМЕТРА * * Аникин А.И. Свойства газов. Свойства конденсированных

ЛАБОРАТОРНАЯ РАБОТА 1.31 Исследование изохорического процесса. Закон Шарля. ЦЕЛЬ РАБОТЫ Исследование зависимости давления воздуха от температуры в замкнутом объеме. Оценить положение абсолютного нуля температур

БЛОК 4 «МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ». Основные положения МКТ (молекулярно-кинетической теории): Все тела состоят из молекул; Молекулы движутся (беспорядочно, хаотически броуновское движение); Молекулы

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ Кафедра физики МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для студентов специальностей

Лабораторная работа 6 Определение отношения удельных теплоемкостей газов методом адиабатного расширения Приборы и материалы:) закрытый стеклянный баллон с краном; 3) манометр;4) поршневой насос Цель работы:

Задание 5 для 8 класса (2017-2018 учебный год) Влажность. Кипение. Фазовые переходы. Часть 1. Теория и примеры решения задач Насыщенные и ненасыщенные пары. Влажность. Как отмечалось в задании «Газовые

ПОДГОТОВК к ОГЭ ЧСТЬ 1 ТЕПЛОВЫЕ ЯВЛЕНИЯ 1.В твёрдых телах теплопередача может осуществляться путём 1.конвекции 2.излучения и конвекции 3.теплопроводности 4.конвекции и теплопроводности 2.Внутренняя энергия

Вариант 1 1. Одноатомный идеальный газ получил от нагревателя 2 кдж тепловой энергии. Какую. Работу он при этом совершил? (Процесс изобарический). 2. Для нагревания 1 кг неизвестного газа на 1 K при постоянном

С1.1. В опыте, иллюстрирующем зависимость температуры кипения от давления воздуха (рис. 1 а), кипение воды под колоколом воздушного насоса происходит уже при комнатной температуре, если давление достаточно

РАБОТА 2 ИЗУЧЕНИЕ ИЗОТЕРМИЧЕСКИХ ПРОЦЕССОВ СЖАТИЯ И РАСШИРЕНИЯ ВОЗДУХА Цель работы: проверить выполнение закона Бойля-Мариотта при изотермических процессах. Введение Термодинамика имеет дело с термодинамической

Банк заданий. Изменение агрегатных состояний вещества. Газовые законы. Тепловые машины. 2.1. Испарение и конденсация. Насыщенный пар. Влажность воздуха. К каждому из заданий даны 4 варианта ответа, из

МАТЕРИАЛ для подготовки к тестированию 8 класс по теме: «Тепловые явления» ПРИМЕРНЫЕ ЗАДАНИЯ: 1. Какое движение молекул и атомов в газообразном состоянии вещества называется тепловым движением? 2. Чем

1 вариант A1. «Расстояние между соседними частицами вещества мало (они практически соприкасаются)». Это утверждение соответствует модели 1) только твердых тел 3) твердых тел и жидкостей 2) только жидкостей

Понятие температуры одно из важнейших в молекулярной физике. Температура - это физическая величина, которая характеризует степень нагретости тел. Беспорядочное хаотическое движение молекул называется тепловым

Лабораторная работа 151 Определение показателя адиабаты воздуха и расчет изменения энтропии в процессе теплообмена Приборы и принадлежности: стеклянный баллон с двухходовым краном, насос, манометр, барометр,

РАБОТА 3 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ВОДЫ МЕТОДОМ КАПИЛЛЯРНЫХ ТРУБОК Цель работы: Измерить коэффициент поверхностного натяжения воды методом капиллярных трубок и исследовать зависимость

ЛАБОРАТОРНАЯ РАБОТА 5.11 ОПРЕДЕЛЕНИЕ МОЛЯРНОЙ ТЕПЛОТЫ ИСПАРЕНИЯ ВОДЫ ПРИ ТЕМПЕРАТУРЕ КИПЕНИЯ Цель работы: экспериментальное определение молярной теплоты испарения воды при атмосферном давлении и температуре

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ) Тестовые задания по молекулярной

ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ УДЕЛЬНЫХ ТЕПЛОЁМКОСТЕЙ ВОЗДУХА МЕТОДОМ КЛЕМАНА-ДЕЗОРМА -- Страница 1 из 6 Лабораторная работа ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ УДЕЛЬНЫХ ТЕПЛОЁМКОСТЕЙ ВОЗДУХА МЕТОДОМ КЛЕМАНА- ДЕЗОРМА Теплоёмкостью

Работа 2.2 ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ ТЕПЛОЕМКОСТЕЙ ГАЗА МЕТОДОМ АДИАБАТИЧЕСКОГО РАСШИРЕНИЯ Цель работы:) изучение первого начала термодинамики в различных изопроцессах; 2) экспериментальное определение показателя

Раздел 1. ТЕПЛОВЫЕ ЯВЛЕНИЯ 1. ТЕМПЕРАТУРА. ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ 1-й уровень сложности? 1.1. В ведро с холодной водой бросили кирпич, который перед этим некоторое время находился в костре. Как будут изменяться

Примерный банк заданий по физике 8 класс базовый уровень. 1.1Агрегатные состояния. Плавление и отвердевание 1. Агрегатное состояние вещества определяется 1)размерами частиц и расстоянием между ними 2)расстоянием

Задание 4. Влажность. Кипение. Фазовые переходы. (2014-2015 учебный год). Насыщенные и ненасыщенные пары. Влажность. Как отмечалось в первом задании, в жидкости (или твердом теле) при любой температуре

ЛАБОРАТОРНАЯ РАБОТА 5.6 ОПРЕДЕЛЕНИЕ С P /C V ВОЗДУХА МЕТОДОМ КЛЕМАНА ДЕЗОРМА И РАСЧЕТ ИЗМЕНЕНИЯ ЭНТРОПИИ ПРИ РАЗЛИЧНЫХ ПРОЦЕССАХ Цель работы: экспериментальное определение отношения теплоемкостей С р /С

ЛЕТНЯЯ ШКОЛА 10 класс физико-математический профиль физико-технический профиль 3 июля 2018 года ИТОГОВАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ РАЗБОР, КРИТЕРИИ ОЦЕНИВАНИЯ 1.Нагревание комнаты (4 балла) Комната

3 сессия: Основы термодинамики Тема 1: Внутренняя энергия. Тепловые явления можно описать с помощью макроскопических величин (Р,Т, V), которые можно регистрировать такими приборами как манометр и термометр.

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ТЕПЛОПРОВОДНОСТИ МЕТАЛЛА Задачи 1. Создать в металлическом стержне стационарный градиент температуры с помощью нагревателя и калориметра с холодной водой. 2. Измерить зависимость

ЛАБОРАТОРНАЯ РАБОТА 5.9 ИЗМЕНЕНИЕ ЭНТРОПИИ В ИЗОЛИРОВАННОЙ СИСТЕМЕ Цель работы: исследование приращения энтропии в необратимых адиабатных процессах. Литература: гл. 6 6.1 6.11; гл. 3 3.1, 3.4;

Условие задачи Решение 2.Молекулярная физика и термодинамика 7. Распределение Максвелла и Больцмана. Формула Больцмана характеризует распределение частиц, находящихся в состоянии хаотического теплового

Основные понятия: Тепловые явления Обязательный минимум по предмету физика 8 класс «а», «с», «н» 1 триместр Тепловое движение. Внутренняя энергия. Два способа изменения внутренней энергии: работа и теплопередача.

Воздушный шар объемом 2500 м 3 с массой оболочки 400 кг имеет внизу отверстие, через которое воздух в шаре нагревается горелкой. Какова максимальная масса груза, который может поднять шар, если воздух

1 Относительная влажность воздуха в закрытом сосуде 30%. Какой станет относительная влажность, если объѐм сосуда при неизменной температуре уменьшить в 3 раза? 1) 60% 2) 90% 3) 100% 4) 120% 2 В результате

Мастер-класс 3 декабря 2016 года. Термодинамика, часть 2. Задачи. 1. В сосуде неизменного объема находится идеальный газ. Если часть газа выпустить из сосуда при постоянной температуре, то как изменятся

ЛАБОРАТОРНАЯ РАБОТА 5.13 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТИ Цель работы: экспериментальное определение коэффициента поверхностного натяжения жидкости и его зависимости от температуры.

Лабораторная работа 8 Определение отношения теплоемкости газа при постоянном давлении к теплоемкости газа при постоянном объеме Цель работы: изучение законов идеального газа и определение опытным путем

Урок по теме: «Тепловое движение. Температура» ТЕПЛОВОЕ ДВИЖЕНИЕ. ТЕМПЕРАТУРА Этот учебный год мы начинаем с изучения нового раздела физики, посвящённого тепловым явлениям. К тепловым явлениям относятся

Насыщенные и ненасыщенные пары. Влажность. Как отмечалось в первом задании, в жидкости (или твердом теле) при любой температуре существует некоторое количество «быстрых» молекул, кинетическая энергия которых

Итоговый тест, Машиноведение (Теплотехника) 1. Идеальный газ отдал количество теплоты 300 Дж и при этом внутренняя энергия газа уменьшилась на 100 Дж. Работа, совершенная газом, равна 1) 400 Дж 2) 200

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА Кириллов А.М., учитель гимназии 44 г. Сочи (http://kirillandrey72.narod.ru/) Данная подборка тестов сделана на основе учебного пособия «Веретельник В.И., Сивов Ю.А.,

Министерство образования и науки Российской Федерации Государственное образовательное учреждение Высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра

Изменение физических величин в процессах, часть 1 1. Температуру холодильника идеальной тепловой машины уменьшили, оставив температуру нагревателя прежней. Количество теплоты, полученное газом от нагревателя

Работа 2.16 Исследование зависимости вязкости аморфного вещества от температуры и определение энергии активации его молекул вода. Оборудование: консистометр, секундомер, исследуемое аморфное тело, Введение

18.2 Диаграмма состояния. Тройная точка. Фазовые превращения определяются изменениями температуры и давления. Для наглядного изображения фазовых превращений используется диаграмма состояния, на которой

Задания к контрольной работе 2 Контрольная работа проводится по главам: «Тепловые машины», «Молекулярно-кинетическая теория идеального газа» и «Агрегатные состояния вещества». Если ученик выполнил все

КАЛМЫЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра общей физики Лабораторная работа 9 «Определение теплоты перехода воды в пар при температуре кипения» Лаборатория 211 Лабораторная работа 9 «Определение теплоты

Тренировочные задания по МКТ (А) Какое явление наиболее убедительно доказывает, что между молекулами существуют силы отталкивания?) диффузия) броуновское движение) беспорядочное движение молекул 4)

Индивидуальное задание N 7 1.1. Два сосуда одинакового объема содержат кислород. В одном сосуде давление Р 1 =2 МПа и температура Т 1 =800 К, в другом Р 2 =2,5 МПа, Т 2 =200 К. Сосуды соединили трубкой

Экспериментальное задание. Наблюдение остывания воды в сосуде, если вода чистая, если на поверхность воды налит тонкий слой подсолнечного масла, молока. Цель работы: научиться измерять скорость остывания

Министерство образования и науки, молодежи и спорта Украины Государственное высшее учебное заведение «Национальный горный университет» Методические указания к лабораторной работе.3 ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА

2.3. ОСНОВЫ ТЕРМОДИНАМИКИ Основные законы и формулы Термодинамика исследует тепловые свойства газов, жидкостей и твёрдых тел. Физическая система в термодинамике (её обычно называют термодинамической) представляет

ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ C P /C V ДЛЯ ВОЗДУХА МЕТОДОМ КЛЕМАНА-ДЕЗОРМА Принадлежности: экспериментальная установка в сборе. Введение. Согласно первому закону термодинамики тепло, подведенное к термодинамической

ЛАБОРАТОРНАЯ РАБОТА 21 ОПРЕДЕЛЕНИЕ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТЕЙ Цель работы: измерение поверхностного натяжения жидкостей методом отрыва капель при комнатной температуре. Оборудование: капельница,

Составитель: Яргаева В. А. РАБОТА. ПОСТРОЕНИЕ ДИАГРАММЫ ПЛАВКОСТИ ДВУХКОМПОНЕНТНОЙ СИСТЕМЫ Цель работы: освоить термический анализ: снять кривые охлаждения чистых компонентов и бинарных смесей различного

ИЗМЕРЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА Методические указания для проведения лабораторных работ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ

ЗАДАЧИ К ИНДИВИДУАЛЬНОМУ ДОМАШНЕМУ ЗАДАНИЮ 5 (график в конце файла) 1. Воздушный пузырек на дне озера глубиной 16 м имеет объем 1,1 см 3 Температура на дне равна 5 С, а на поверхности 16 С. Определите

Работа 22 Определение плотности сыпучих и пористых тел Оборудование: два одинаковых сосуда, жидкостный манометр, сыпучее или пористое тело Введение Как известно, плотность вещества m ρ =, (1) V где m масса

Виртуальная лабораторная работа 6 ОПРЕДЕЛЕНИЕ ОТНОШЕНИЯ МОЛЯРНЫХ ТЕПЛОЕМКОСТЕЙ C /C v ДЛЯ ВОЗДУХА (компьютерное моделирование) В.В.Монахов, А.В.Кожедуб, А.В.Смирнов Цель работы - экспериментальное определение

Лабораторная работа «Измерение ускорения свободного падения» Цель работы: определить ускорение свободного падения с помощью нитяного маятника. Приборы и материалы: штатив с муфтой и лапкой; груз массой

17.3 Эффект Джоуля - Томсона Если газ адиабатически расширяется и совершает работу, то он должен охлаждаться, поскольку производимая им работа совершается за счет его внутренней энергии. Это наблюдали

ФИЗИКА 8 класс Тема урока: «Плавления и отвердевания тел» Цели урока: Предметные: обеспечить закрепление основных понятий и применение знаний и способов действий по теме; организовать деятельность по самостоятельному

Молекулярная физика. Тепловые явления

Опытное обоснование основных положений МКТ:

Молекулярно-кинетическая теория - учение о строении и свойствах вещества, использующее представление о существовании атомов и молекул как наименьших частиц химического вещества. В основе МКТ лежат три строго доказанных с помощью опытов утверждения:

Вещество состоит из частиц - атомов и молекул, между которыми существуют промежутки;

Эти частицы находятся в хаотическом движении, на скорость которого влияет температура;

Частицы взаимодействуют друг с другом.

То, что вещество действительно состоит из молекул, можно доказать, определив их размеры. Капля масла расплывается по поверхности воды, образуя слой, толщина которого равна диаметру молекулы. Капля объемом 1 мм3 не может расплыться больше, чем на 0,6 м2:

Существуют также другие способы доказательства существования молекул, но перечислять их нет необходимости: современные приборы (электронный микроскоп, ионный проектор) позволяют видеть отдельные атомы и молекулы.

Силы взаимодействия молекул . а) взаимодействие имеет электромагнитный характер; б) силы короткодействующие, обнаруживаются на расстояниях, сопоставимых с размерами молекул; в) существует такое расстояние, когда силы притяжения и отталкивания равны (R0), если R>R0, тогда преобладают силы притяжения, если R

Действие сил молекулярного притяжения обнаруживается в опыте со свинцовыми цилиндрами, слипающимися после очистки их поверхностей.

Молекулы и атомы в твердом теле совершают беспорядочные колебания относительно положений, в которых силы притяжения и отталкивания со стороны соседних атомов уравновешены. В жидкости молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее, эти перескоки молекул являются причиной текучести жидкости, ее способности принимать форму сосуда. В газах обычно расстояния между атомами и молекулами в среднем значительно больше размеров молекул; силы отталкивания на больших расстояниях не действуют, поэтому газы легко сжимаются; практически отсутствуют между молекулами газа и силы притяжения, поэтому газы обладают свойством неограниченно расширяться.

Масса и размер молекул. Постоянная Авогадро:

Любое вещество состоит из частиц, поэтомуколичество вещества принято считать пропорциональным числу частиц. Единицей количества вещества является моль . Моль равен количеству вещества системы, содержащей столько же частиц, сколько содержится атомов в 0,012 кг углерода.

Отношение числа молекул к количеству вещества называется постоянной Авогадро:

Постоянная Авогадро равна />. Она показывает, сколько атомов или молекул содержится в одном моле вещества.

Количество вещества можно найти как отношение числа атомов или молекул вещества к постоянной Авогадро:

Молярной массой называется величина, равная отношению массы вещества к количеству вещества:

Молярную массу можно выразить через массу молекулы:

Для определения массы молекул нужно разделить массу вещества на число молекул в нем:

Броуновское движение:

Броуновское движение - тепловое движение взвешенных в газе или жидкости частиц. Английский ботаник Роберт Броун (1773 - 1858) в 1827 году обнаружил беспорядочное движение видимых в микроскоп твердых частиц, находящихся в жидкости. Это явление было названо броуновским движением. Это движение не прекращается; с увеличением температуры его интенсивность растет. Броуновское движение - результат флуктуации давления (заметного отклонения от средней величины).

Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу не компенсируют друг друга.

Идеальный газ:

У разреженного газа расстояние между молекулами во много раз превышает их размеры. В этом случае взаимодействие между молекулами пренебрежимо мало и кинетическая энергия молекул много больше потенциальной энергии их взаимодействия.

Для объяснения свойств вещества в газообразном состоянии вместо реального газа используется его физическая модель - идеальный газ. В модели предполагается:

расстояние между молекулами чуть больше их диаметра;

молекулы - упругие шарики;

между молекулами не действуют силы притяжения;

при соударении молекул друг с другом и со стенками сосуда действуют силы отталкивают;

движения молекул подчиняется законам механики.

Основное уравнение МКТ идеального газа:

Основное уравнение МКТ позволяет вычислить давление газа, если известны масса молекулы, среднее значение квадрата скорости и концентрация молекул.

Давление идеального газа заключается в том, что молекулы при столкновениях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела. При столкновении молекулы со стенкой сосуда проекция скорости vx вектора скорости на ось OX, перпендикулярную стенке, изменяет свой знак на противоположный, но остается постоянной по модулю. Поэтому в результате столкновений молекулы со стенкой проекция ее импульса на ось OX изменяется от mv1x=-mvx до mv2x=mvx. Изменение импульса молекулы при столкновении со стенкой вызывает сила F1, действующая на нее со стороны стенки. Изменение импульса молекулы равно импульсу этой силы:

Во время столкновения, согласно третьему закону Ньютона, молекула действует на стенку с силой F2, равной по модулю силе F1 и направленной противоположно.

Молекул много, и каждая передает стенке при столкновении такой же импульс. За секунду они передают импульс />, где z - число столкновений всех молекул со стенкой, которое пропорционально концентрации молекул в газе, скорости молекул и площади поверхности стенки: />. К стенке движется только половина молекул, остальные движутся в обратную сторону: />. Тогда полный импульс, переданный стенке за 1 секунду: />. Согласно второму закону Ньютона изменение импульса тела за единицу времени равно действующей на него силе:

Учитывая, что не все молекулы имеют одинаковую скорость, сила, действующая на стенку будет пропорциональна среднему квадрату скорости. Так как молекулы движутся во всех направлениях, средние значения квадратов проекций скорости равны. Следовательно, средний квадрат проекции скорости: />; />. Тогда давление газа на стенку сосуда равно:

/> - основное уравнение МКТ.

Обозначив среднее значение кинетической энергии поступательного движения молекул идеального газа:

/>, получим

Температура и ее измерение:

Основное уравнение МКТ для идеального газа устанавливает связь легко измеряемого макроскопического параметра - давления - с такими микроскопическими параметрами газа, как средняя кинетическая энергия и концентрация молекул. Но, измерив только давление, мы не можем узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентрацию. Следовательно, для нахождения микроскопических параметров газа нужны измерения еще какой-то физической величины, связанной со средней кинетической энергией молекул. Такой величиной является температура .

Любое макроскопическое тело или группа макроскопических тел при неизменных внешних условиях самопроизвольно переходит в состояние теплового равновесия. Тепловое равновесие - это такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными.

Температура характеризует состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру .

Для измерения температуры можно воспользоваться изменением любой макроскопической величины в зависимости от температуры: объема, давления, электрического сопротивления и т.д.

Чаще всего на практике используют зависимость объема жидкости (ртути или спирта) от температуры. При градуировке термометра обычно за начало отсчета (0) принимают температуру тающего льда; второй постоянной точкой (100) считают температуру кипения воды при нормальном атмосферном давлении (шкала Цельсия). Так как различные жидкости расширяются при нагревании неодинаково, то установленная таким образом шкала будет до некоторой степени зависеть от свойств данной жидкости. Конечно, 0 и 100С будут совпадать у всех термометров, но 50С совпадать не будут.

В отличие от жидкостей все разреженные газы расширяются при нагревании одинаково и одинаково меняют свое давление при изменении температуры. Поэтому в физике для установления рациональной температурной шкалы используют изменение давления определенного количества разреженного газа при постоянном объеме или изменение объема газа при постоянном давлении. Такую шкалу иногда называют идеальной газовой шкалой температур .

При тепловом равновесии средняя кинетическая энергия поступательного движения молекул всех газов одинакова. Давление прямо пропорционально средней кинетической энергии поступательного движения молекул: />. При тепловом равновесии, если давление газа данной массы и его объем фиксированы, средняя кинетическая энергия молекул газа должна иметь строго определенное значение, как и температура.Т. к. />, то />, или />. Обозначим />. Величина />растет с повышением температуры и ни от чего, кроме температуры не зависит. Следовательно, ее можно считать естественной мерой температуры.

Абсолютная температурная шкала:

Будем считать величину />, измеряемую в энергетических единицах, прямо пропорциональной температуре />, выражаемой в градусах: />, где /> - коэффициент пропорциональности. Коэффициент />, в честь австрийского физика Л. Больцмана называется постоянной Больцмана.

Следовательно, />. Температура, определяемая этой формулой, не может быть отрицательной. Следовательно, наименьшим возможным значением температуры является 0, если давление или объем равны нулю.

Предельную температуру, при которой давление идеального газа обращается в нуль при фиксированном объеме или объем идеального газа стремится к нулю при неизменном давлении, называют абсолютным нулем температуры .

Английский ученый У. Кельвин ввел абсолютную шкалу температур. Нулевая температура по шкале Кельвина соответствует абсолютному нулю, а каждая единица температуры по этой шкале равна градусу по шкале Цельсия. Единица абсолютной температуры в СИ называется Кельвином: />. Следовательно, абсолютная температура есть мера средней кинетической энергии движения молекул.

Скорость молекул газа:

Зная абсолютную температуру, можно найти среднюю кинетическую энергию молекул газа, а, следовательно, и средний квадрат их скорости.

Квадратный корень из этой величины называется средней квадратичной скоростью :

Опыты по определению скоростей молекул доказали справедливость этой формулы. Одни из опытов был предложен О. Штерном в 1920 году.

Уравнение состояния идеального газа (уравнение Менделеева - Клапейрона). Универсальная газовая постоянная:

На основе зависимости давления газа от концентрации его молекул и температуры можно получить уравнение, связывающее все три макроскопических параметра: давление, объем и температуру - характеризующие состояние данной массы достаточно разреженного газа. Это уравнение называют уравнением состояния идеального газа.

/>, где /> - универсальная газовая постоянная

/>для данной массы газа, следовательно

PAGE_BREAK--

/> - уравнение Клапейрона.

Изотермический, изохорный и изобарный процессы:

Количественные зависимости между двумя параметрами газа при фиксированном значении третьего параметра называют газовыми законами. А процессы, протекающие при неизменном значении одного из параметров, - изопроцессами.

Изотермический процесс - процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре.

/>при />

Для газа данной массы произведение давления газа на его объем постоянно, если температура газа не меняется. - закон Бойля - Мариотта.

Изохорный процесс - процесс изменения состояния термодинамической системы макроскопических тел при постоянном объеме.

/>при />

Для газа данной массы отношение давления к температуре постоянно, если объем газа не меняется . - закон Шарля.

Изобарный процесс - процесс изменения состояния термодинамической системы макроскопических тел при постоянном давлении.

/>при />

Для газа данной массы отношение объема к температуре постоянно, если давление газа не меняется . - закон Гей-Люссака.

Внутренняя энергия:

Внутренняя энергия макроскопического тела равна сумме кинетических энергий беспорядочного движения всех молекул (или атомов) относительно центров масс тела и потенциальных энергий взаимодействия всех молекул друг с другом (но не с молекулами других тел).

При любых процессах в изолированной термодинамической системе внутренняя энергия остается неизменной. />

Внутренняя энергия идеального газа.

Для вычисления внутренней энергии идеального одноатомного газа массой />нужно умножить среднюю кинетическую энергию одного атома />на число атомов />. Учитывая, что />, получим значение внутренней энергии идеального газа:

Если идеальный газ состоит из более сложных молекул, чем одноатомный, то его внутренняя энергия равна сумме поступательного и вращательного движения молекул.

Для двухатомного газа: />

Для многоатомного газа: />

У реальных газов, жидкостей и твердых тел средняя потенциальная энергия взаимодействия молекул не равна нулю. Для газов она много меньше средней кинетической энергии молекул, но для твердых тел и жидкостей она сравнима с ней. Средняя потенциальная энергия взаимодействия молекул зависит от объема вещества, так как при изменении объема меняется среднее расстояние между молекулами. Следовательно, внутренняя энергия в термодинамике в общем случае наряду с температурой зависит и от объема.

Количество теплоты:

Процесс передачи энергии от одного тела к другому без совершения работы называется теплообменом или теплопередачей . Теплообмен происходит между телами, имеющими разную температуру. При установлении контакта между телами с различными температурами происходит передача части внутренней энергии от тела с более высокой температурой к телу, у которого температура ниже. Энергия, переданная телу в результате теплообмена, называется количеством теплоты .

Удельная теплоемкость вещества:

Если процесс теплопередачи не сопровождается работой, то на основании первого закона термодинамики количество теплоты равно изменению внутренней энергии тела: />.

Средняя энергия беспорядочного поступательного движения молекул пропорциональна абсолютной температуре. Изменение внутренней энергии тела равно алгебраической сумме изменений энергии всех атомов или молекул, число которых пропорционально массе тела, поэтому изменение внутренней энергии и, следовательно, количество теплоты пропорционально массе и изменению температуры:

Коэффициент пропорциональности в этом уравнении называется удельной теплоемкостью вещества . Удельная теплоемкость показывает, какое количество теплоты необходимо для нагревания 1 кг вещества на 1 К.

Работа в термодинамике:

В механике работа определяется как произведение модулей силы и перемещения и косинуса угла между ними. Работа совершается при действии силы на движущееся тело и равна изменению его кинетической энергии.

В термодинамике движение тела как целого не рассматривается, речь идет о перемещении частей макроскопического тела относительно друг друга. В результате меняется объем тела, а его скорость остается равной нулю. Работа в термодинамике определяется так же, как и в механике, но равна изменению не кинетической энергии тела, а его внутренней энергии.

При совершении работы (сжатии или расширении) изменяется внутренняя энергия газа. Причина этого состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия. Вычислим работу газа при расширении. Газ действует на поршень с силой />, где /> - давление газа, а /> - площадь поверхности />поршня. При расширении газа поршень смещается в направлении силы />на малое расстояние />. Если расстояние мало, то давление газа можно считать постоянным. Работа газа равна:

где /> - изменение объема газа.

В процессе расширения газа совершает положительную работу, так как направление силы и перемещения совпадают. В процессе расширения газ отдает энергию окружающим телам.

Работа, совершаемая внешними телами над газом, отличается от работы газа только знаком />, так как сила />, действующая на газ, противоположна силе />, с которой газ действует на поршень, и равна ей по модулю (третий закон Ньютона); а перемещение остается тем же самым. Поэтому работа внешних сил равна:

Первый закон термодинамики:

Первый закон термодинамики является законом сохранения энергии, распространенным на тепловые явления. Закон сохранения энергии: энергия в природе не возникает из ничего и не исчезает: количество энергии неизменно, она только переходит из одной формы в другую.

В термодинамике рассматриваются тела, положение центра тяжести которых практически не меняется. Механическая энергия таких тел остается постоянной, а изменяться может лишь внутренняя энергия. Внутренняя энергия может изменяться двумя способами: теплопередачей и совершением работы. В общем случае внутренняя энергия изменяется как за счет теплопередачи, так и за счет совершения работы. Первый закон термодинамики формулируется именно для таких общих случаев:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если система изолирована, то над ней не совершается работа и она не обменивается теплотой с окружающими телами. Согласно первому закону термодинамики внутренняя энергия изолированной системы остается неизменной .

Учитывая, что />, первый закон термодинамики можно записать так:

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами .

Второй закон термодинамики: невозможно перевести теплоту от более холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или в окружающих телах.

Применение первого закона термодинамики к изопроцессам:

При изохорном процессе объем газа не меняется и поэтому работа газа равна нулю. Изменение внутренней энергии равно количеству переданной теплоты:

При изотермическом процессе внутренняя энергия идеального газа не меняется. Все переданное газу количество теплоты идет на совершение работы:

При изобарном процессе передаваемое газу количество теплоты идет на изменение его внутренней энергии и на совершение работы при постоянном давлении.

Адиабатный процесс:

Адиабатный процесс - процесс в теплоизолированной системе. Следовательно, изменение внутренней энергии при адиабатном процессе происходит только за счет совершении работы:

Так как работа внешних сил при сжатии положительна, внутренняя энергия газа при адиабатном сжатии увеличивается, а его температура повышается.

При адиабатном расширении газ совершает работу за счет уменьшения своей внутренней энергии, поэтому температура газа при адиабатном расширении понижается.

Принцип действия тепловых двигателей:

Тепловым двигателем называется двигатель, который производит механическую работу за счет энергии, выделившейся при сгорании топлива. Некоторые виды тепловых двигателей:

паровая машина;

паровая турбина;

двигатель внутреннего сгорания;

реактивный двигатель.

Физические основы работы всех тепловых двигателей одинаковы. Тепловой двигатель состоит из трех основных частей: нагревателя, рабочего тела, холодильника.

Процесс работы теплового двигателя: Рабочее тело приводят в контакт с нагревателем (/> - высокая), поэтому рабочее тело получает от нагревателя />. За счет этого количества теплоты рабочее тело совершает механическую работу. Затем рабочее тело приводят в контакт с холодильником (/> - низкая), поэтому рабочее тело отдает тепло холодильнику. Таким образом возвращается в исходное состояние. Теперь рабочее тело приводят в контакт с нагревателем и все происходит сначала. Следовательно, тепловая машина - периодического действия, то есть в этой машине тело совершает замкнутый процесс - цикл. За каждый цикл рабочее тело совершает работу

/>или />

КПД принято выражать в процентах:

КПД теплового двигателя и его максимальное значение:

В начале XIX века французский инженер Сади Карно исследовал пути повышения КПД тепловых двигателей. Он придумал цикл, который должен совершать идеальный газ в некоторой тепловой машине, такой, что при этом получается максимально возможный КПД. Цикл Карно состоит из двух изотерм и двух адиабат.

Идеальный газ приводят в контакт с нагревателем и предоставляют ему возможность расширяться изотермически, то есть при температуре нагревателя. Когда расширившийся газ перейдет в состояние 2, его теплоизолируют от нагревателя и дают ему возможность расширяться адиабатически, то есть газ совершает работу за счет убыли его внутренней энергии. Расширяясь адиабатически газ охлаждается до тех пор, пока его температура не будет равна температуре холодильника (состояние 3). Теперь газ приводят в контакт с холодильником сжимают изотермически. Газ отдает холодильнику />. Газ переходит в состояние 4. Затем газ теплоизолируют от холодильника и сжимают адиабатически. При этом температура газа увеличивается и достигает температуры нагревателя. Процесс повторяется сначала.

Формула для расчета КПД идеальной тепловой машины, работающей по циклу Карно с идеальным газом.

Карно показал, что КПД любой другой тепловой машины (то есть с другим рабочим телом или работающей по другому циклу) будет меньше, чем КПД цикла Карно. На практике не используют машины, работающие по циклу Карно, но формула (*) позволяет определить максимальный КПД при заданных температурах нагревателя и холодильника.

Очевидно, что для увеличения КПД нужно понижать температуру холодильника и повышать температуру нагревателя. Понижать температуру холодильника искусственно невыгодно, так как это требует дополнительных затрат энергии. Повышать температуру нагревателя можно тоже до определенного предела, так как различные материалы обладают различной жаропрочностью при высоких температурах. Однако формула Карно показала, что существуют неиспользованные резервы повышения КПД, так как практический КПД очень сильно отличается от КПД цикла Карно.

Продолжение
--PAGE_BREAK--

Тепловые двигатели и охрана природы

Испарение и конденсация, насыщенные и ненасыщенные пары:

Неравномерное распределение кинетической энергии теплового движения молекул приводит к тому, что при любой температуре кинетическая энергия некоторых молекул жидкости или твердого тела может превышать потенциальную энергию их связи с остальными молекулами. Испарение - процесс, при котором с поверхности жидкости или твердого тела вылетают молекулы, кинетическая энергия которых превышает потенциальную энергию взаимодействия молекул. Испарение сопровождается охлаждением жидкости, так как жидкость покидают молекулы, имеющие большую кинетическую энергию, и внутренняя энергия жидкости понижается. Вылетевшие молекулы начинают беспорядочно двигаться в тепловом движении газа; они могут или навсегда удалиться от поверхности жидкости, или снова вернуться в жидкость. Такой процесс называется конденсацией.

Испарение жидкости в закрытом сосуде при неизменной температуре приводит к постепенному увеличению концентрации молекул испаряющегося вещества в газообразном состоянии. Через некоторое время после начала процесса испарения концентрация вещества в газообразном состоянии достигает такого значения, при котором число молекул, возвращающихся в жидкость в единицу времени, становится равным числу молекул, покидающих поверхность жидкости за то же время. Устанавливается динамическое равновесие между процессами испарения и конденсации вещества.

Вещество в газообразном состоянии, находящееся в динамическом равновесии с жидкостью, называется насыщенным паром . Пар, находящийся при давлении ниже давления насыщенного пара называется ненасыщенным .

При сжатии насыщенного пара концентрация молекул пара увеличивается, равновесие между процессами испарения и конденсации нарушается и часть пара превращается в жидкость. При расширении насыщенного пара концентрация его молекул уменьшается и часть жидкости превращается в пар. Таким образом, концентрация насыщенного пара остается постоянной независимо от объема. Так как давление газа пропорционально концентрации и температуре (/>), давление насыщенного пара при постоянной температуре не зависит от объема.

Интенсивность процесса испарения увеличивается с возрастанием температуры жидкости. Поэтому динамическое равновесие между испарением и конденсацией при повышении температуры устанавливается при больших концентрациях молекул газа.

Давление идеального газа при постоянной концентрации молекул возрастает прямо пропорционально абсолютной температуре. Так как в насыщенном паре при возрастании температуры концентрация молекул увеличивается, давление насыщенного пара с повышением температуры возрастает быстрее, чем давление идеального газа с постоянной концентрацией молекул. То есть давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул пара.

Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара.

Зависимость температуры кипения жидкости от давления:

При увеличении температуры интенсивность испарения жидкости увеличивается, и при некоторой температуре жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной .

В жидкости всегда присутствуют растворенные газы, которые выделяются на дне и стенках сосуда. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают на поверхность.

Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара внутри его немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости.

Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости. Чем больше внешнее давление, тем выше температура кипения.

У каждой жидкости своя температура кипения, которая зависит от давления насыщенного пара. чем выше давление насыщенного пара, тем ниже температура кипения соответствующей жидкости , так как при меньших температурах давление насыщенного пара становится равным атмосферному.

При увеличении температуры жидкости увеличивается давление насыщенного пара и одновременно растет его плотность. Плотность жидкости, находящейся в равновесии со своим паром, наоборот, уменьшается вследствие расширения жидкости при нагревании.

Если на одном рисунке начертить кривые зависимости плотности жидкости и плотности ее насыщенного пара от температуры, то для жидкости кривая пойдет вниз, а для пара - вверх.

При некоторой температуре обе кривые сливаются, то есть плотность жидкости становится равной плотности пара.

Критическая температура - температура, при которой исчезают различия в физических свойствах между жидкостью и ее насыщенным паром.

При температурах, больших критической, вещество не превращается в жидкость ни при каких давлениях.

Влажность воздуха:

Атмосферный воздух представляет собой смесь различных газов и водяного пара. Каждый из газов вносит свой вклад в суммарное давление, производимое воздухом на находящиеся в нем тела.

Давление, которое производил бы водяной пар, если бы все остальные газы отсутствовали, называют парциальным давлением водяного пара .

Относительной влажностью воздуха />называют отношение парциального давления />водяного пара, содержащегося в воздухе при данной температуре, к давлению />насыщенного пара при той же температуре, выраженное в процентах:

Так как давление насыщенного пара тем меньше, чем меньше температура, то при охлаждении воздуха находящийся в нем водяной пар при некоторой температуре становится насыщенным. Температура />, при которой находящийся в воздухе водяной пар становится насыщенным, называется точкой росы .

По точке росы можно найти давление водяного пара в воздухе. Она равно давлению насыщенного пара при температуре, равной точке росы. По значениям давления пара в воздухе и давления насыщенного пара при данной температуре можно определить относительную влажность воздуха.

Кристаллические и аморфные тела:

Аморфными называются тела, физические свойства которых одинаковы по всем направлениям. Аморфные тела являются изотропными - у них нет строгого порядка в расположении атомов. Примерами аморфных тел могут служить куски затвердевшей смолы, янтарь, стекло.

Твердые тела, в которых атомы или молекулы расположены упорядоченно и образуют периодически повторяющуюся внутреннюю структуру, называют кристаллами . Физические свойства кристаллических тел неодинаковы в различных направлениях, но совпадают в параллельных направлениях. Это свойство кристаллов называется анизотропностью .

Анизотропия механических, тепловых, электрических и оптических свойств кристаллов объясняется тем, что при упорядоченном расположении атомов, молекул или ионов силы взаимодействия между ними и межатомные расстояния оказываются неодинаковыми по различным направлениям.

Кристаллические тела делятся на монокристаллы и поликристаллы . Монокристаллы иногда обладают геометрически правильной формой, но главный признак монокристалла - периодически повторяющаяся внутренняя структура во всем его объеме. Поликристаллическое тело представляет собой совокупность сросшихся друг с другом хаотически ориентированных маленьких кристаллов - кристаллитов. Каждый маленький монокристалл поликристаллического тела анизотропен, но поликристаллическое тело изотропно.

Механические свойства твердых тел:

Рассмотрим механические свойства твердого тела на примере деформации растяжения. В любом сечении деформированного тела действуют силы упругости, препятствующие разрыву этого тела на части. Механическим напряжением называют отношение модуля силы упругости к площади поперечного сечения тела:

При малых деформациях напряжение />прямо пропорционально относительному удлинению />(участок ОА). Эта зависимость называется законом Гука:

/>, где /> - модуль Юнга.

/>, Обозначим />, тогда />

Закон Гука выполняется только при небольших деформациях, а следовательно, при напряжениях, не превосходящих некоторого предела. Максимальное напряжение />, при котором еще выполняется закон Гука называют пределом пропорциональности .

Если увеличивать нагрузку, то деформация становится нелинейной, напряжение перестает быть прямо пропорционально относительному удлинению. Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации (относительная остаточная деформация не превышает 0,1%), называют пределом упругости />.

Если внешняя нагрузка такова, что напряжение в материале превышает предел упругости, то после снятия нагрузки тело остается деформированным. При некотором значении напряжения, соответствующем на диаграмме точке С, удлинение нарастает практически без увеличения нагрузки. Это явление называется текучестью материала (участок CD).

Далее с увеличением деформации кривая напряжений начинает немного возрастать и достигает максимума в точке Е. Затем напряжение резко спадает и тело разрушается. Разрыв происходит после того, как напряжение достигает максимального значения />, называемого пределом прочности .

Упругие деформации:

При упругих деформациях размеры и форма тела восстанавливаются при снятии нагрузки.

«Физика - 10 класс»

Дадим общее представление о значении и смысле того, что вы сейчас начнете изучать.

Макроскопические тела.


Мы живем в мире макроскопических тел. Наше тело - это тоже макроскопическое тело.

В физике макроскопическими телами называются большие тела, состоящие из огромного числа молекул. Газ в баллоне, вода в стакане, песчинка, камень, стальной стержень, земной шар - все это примеры макроскопических тел (рис.7.7).


Механика и механическое движение.


В механике Ньютона имеют дело с механическим движением макроскопических тел - перемещением одних тел относительно других в пространстве с течением времени.

Механика изучает движение тел, но она не в состоянии объяснить, почему существуют твердые, жидкие и газообразные тела и почему эти тела могут переходить из одного состояния в другое. Исследование внутренних свойств тел не входит в задачу механики.

В механике говорят о силах как о причинах изменения скоростей тел, но природа этих сил, их происхождение не выясняются. Остается непонятным, почему при сжатии тел появляются силы упругости, почему возникает трение. На многие, очень многие вопросы механика Ньютона ответов не дает.

Все это хорошо понимал сам Ньютон. Ему принадлежат знаменательные слова: «Я не знаю, чем я кажусь миру; мне самому кажется, что я был только мальчиком, играющим на берегу моря и развлекающимся тем, что от времени до времени находил более гладкие камушки или более красивую раковину, чем обыкновенно, в то время как Великий океан истины лежал передо мной совершенно неразгаданным».

Тепловые явления.


После механического движения самые заметные явления связаны с нагреванием или охлаждением тел, с изменением их температуры. Эти явления называются тепловыми .

Механическое движение не вызывает в теле каких-либо существенных изменений, если не происходит катастрофических столкновений. Но нагревание или охлаждение тела способно изменить его до неузнаваемости. Сильно нагрев прозрачную, но все же видимую воду, мы превратим ее в невидимый пар. Сильное охлаждение превратит воду в кусок льда. Если вдуматься, то эти явления загадочны и достойны изумления. Не удивляемся мы потому, что привыкли к ним с детства.

Надо найти законы, которые могли бы объяснить изменения в телах, когда сами тела неподвижны и когда с точки зрения механики с ними не происходит ничего. Эти законы описывают особый вид движения материи - тепловое движение , присущее всем макроскопическим телам независимо от того, перемещаются они в пространстве или нет.


Тепловое движение молекул.


Все тела состоят из атомов и молекул.
Тепловые явления происходят внутри тел и всецело определяются движением этих частиц. Движение атомов и молекул мало напоминает движение собаки или автомобиля. Атомы и молекулы вещества совершают беспорядочное движение, в котором трудно усмотреть следы какого-либо порядка и регулярности. Беспорядочное движение молекул называют тепловым движением .

Движение молекул беспорядочно из-за того, что число их в телах, которые нас окружают, необозримо велико. Каждая молекула беспрестанно меняет свою скорость при столкновениях с другими молекулами. В результате ее траектория оказывается чрезвычайно запутанной, движение -хаотичным, несравненно более хаотичным, чем движение муравьев в разоренном муравейнике.

Беспорядочное движение огромного числа молекул качественно отличается от упорядоченного механического перемещения тел. Оно представляет собой особый вид движения материи со своими особыми свойствами. Об этих свойствах и пойдет речь в дальнейшем.


Значение тепловых явлений.


Привычный облик нашей планеты существует и может существовать только в довольно узком интервале температур. Если бы температура превысила 100°С, то на Земле при обычном атмосферном давлении не было бы рек, морей и океанов, не было бы воды вообще. Вся вода превратилась бы в пар. А при понижении температуры на несколько десятков градусов океаны превратились бы в громадные ледники.

Даже изменение температуры лишь на 20-30°С при смене времен года меняет на средних широтах весь облик планеты.

С наступлением весны начинается пробуждение природы. Леса одеваются листвой, начинают зеленеть луга. Зимой же жизнь растений замирает. Толстый слой снега покрывает поверхность Земли.

Еще более узкие интервалы температур необходимы для поддержания жизни теплокровных животных. Температура животных и человека поддерживается внутренними механизмами терморегуляции на строго определенном уровне. Достаточно температуре повыситься на несколько десятых градуса, как мы уже чувствуем себя нездоровыми. Изменение же температуры на несколько градусов ведет к гибели организмов. Поэтому неудивительно, что тепловые явления привлекали внимание людей с древнейших времен. Умение добывать и поддерживать огонь сделало человека относительно независимым от колебаний температуры окружающей среды. Это было одним из величайших изобретений человечества.

Изменение температуры оказывает влияние на все свойства тел. Так, при нагревании или охлаждении изменяются размеры твердых тел и объемы жидкостей. Значительно меняются механические свойства тел, например упругость. Кусок резиновой трубки уцелеет, если ударить по нему молотком. Но при охлаждении до температуры ниже - 100°С резина становится хрупкой, как стекло, и от легкого удара резиновая трубка разбивается на мелкие кусочки. Лишь после нагревания резина вновь обретает свои упругие свойства.

Кроме механических свойств, при изменении температуры меняются и другие свойства тел, например сопротивление электрическому току, магнитные свойства и др. Так, если сильно нагреть постоянный магнит, то он перестанет притягивать железные предметы.

Все перечисленные выше и многие другие тепловые явления подчиняются определенным законам. Открытие законов тепловых явлений позволяет с максимальной пользой применять эти явления на практике и в технике. Современные тепловые двигатели, установки для сжижения газов, холодильные аппараты и многие другие устройства конструируют на основе этих законов.


Молекулярно-кинетическая теория.


Еще философы древности догадывались о том что теплота - это вид внутреннего движения. Но только в XVIII в. начала развиваться последовательная молекулярно-кинетическая теория .

Большой вклад в развитие молекулярно-кинетической теории был сделан М. В. Ломоносовым. Он рассматривал теплоту как вращательное движение частиц тела.

Цель молекулярно-кинетической теории - объяснение свойств макроскопических тел и тепловых процессов, происходящих в них, на основе представлений о том, что все тела состоят из отдельных, беспорядочно движущихся частиц.

Молекулярная физика. Тепловые явления

Молекулярно-кинетическая теория

Тепловые явления в молекулярной физике.

Силы взаимодействия молекул, их масса и размер.

Причина броуновского движения частицы.

Давление идеального газа.

Температура

Понятие теплового равновесия.

Изотермический процесс

Изохорный процесс

Изобарный процесс

Внутренняя энергия

Внутренняя энергия идеального газа.

Идеальная газовая шкала температур.

Количество теплоты

Первый закон термодинамики

Второй закон термодинамики

Удельная теплоемкость вещества

Тепловые двигатели и охрана природы.

Опытное обоснование основных положений МКТ:

Молекулярно-кинетическая теория - учение о строении и свойствах вещества, использующее представление о существовании атомов и молекул как наименьших частиц химического вещества. В основе МКТ лежат три строго доказанных с помощью опытов утверждения:

Вещество состоит из частиц - атомов и молекул, между которыми существуют промежутки;

Эти частицы находятся в хаотическом движении, на скорость которого влияет температура;

Частицы взаимодействуют друг с другом.

То, что вещество действительно состоит из молекул, можно доказать, определив их размеры. Капля масла расплывается по поверхности воды, образуя слой, толщина которого равна диаметру молекулы. Капля объемом 1 мм 3 не может расплыться больше, чем на 0,6 м 2:

Существуют также другие способы доказательства существования молекул, но перечислять их нет необходимости: современные приборы (электронный микроскоп, ионный проектор) позволяют видеть отдельные атомы и молекулы.

Силы взаимодействия молекул . а) взаимодействие имеет электромагнитный характер; б) силы короткодействующие, обнаруживаются на расстояниях, сопоставимых с размерами молекул; в) существует такое расстояние, когда силы притяжения и отталкивания равны (R 0), если R>R 0 , тогда преобладают силы притяжения, если R

Действие сил молекулярного притяжения обнаруживается в опыте со свинцовыми цилиндрами, слипающимися после очистки их поверхностей.

Молекулы и атомы в твердом теле совершают беспорядочные колебания относительно положений, в которых силы притяжения и отталкивания со стороны соседних атомов уравновешены. В жидкости молекулы не только колеблются около положения равновесия, но и совершают перескоки из одного положения равновесия в соседнее, эти перескоки молекул являются причиной текучести жидкости, ее способности принимать форму сосуда. В газах обычно расстояния между атомами и молекулами в среднем значительно больше размеров молекул; силы отталкивания на больших расстояниях не действуют, поэтому газы легко сжимаются; практически отсутствуют между молекулами газа и силы притяжения, поэтому газы обладают свойством неограниченно расширяться.

Масса и размер молекул. Постоянная Авогадро:

Любое вещество состоит из частиц, поэтому количество вещества принято считать пропорциональным числу частиц. Единицей количества вещества является моль . Моль равен количеству вещества системы, содержащей столько же частиц, сколько содержится атомов в 0,012 кг углерода.

Отношение числа молекул к количеству вещества называется постоянной Авогадро:

Постоянная Авогадро равна . Она показывает, сколько атомов или молекул содержится в одном моле вещества.

Количество вещества можно найти как отношение числа атомов или молекул вещества к постоянной Авогадро:

Молярной массой называется величина, равная отношению массы вещества к количеству вещества:

Молярную массу можно выразить через массу молекулы:

Для определения массы молекул нужно разделить массу вещества на число молекул в нем:

Броуновское движение:

Броуновское движение - тепловое движение взвешенных в газе или жидкости частиц. Английский ботаник Роберт Броун (1773 - 1858) в 1827 году обнаружил беспорядочное движение видимых в микроскоп твердых частиц, находящихся в жидкости. Это явление было названо броуновским движением. Это движение не прекращается; с увеличением температуры его интенсивность растет. Броуновское движение - результат флуктуации давления (заметного отклонения от средней величины).

Причина броуновского движения частицы заключается в том, что удары молекул жидкости о частицу не компенсируют друг друга.

Идеальный газ:

У разреженного газа расстояние между молекулами во много раз превышает их размеры. В этом случае взаимодействие между молекулами пренебрежимо мало и кинетическая энергия молекул много больше потенциальной энергии их взаимодействия.

Для объяснения свойств вещества в газообразном состоянии вместо реального газа используется его физическая модель - идеальный газ. В модели предполагается:

расстояние между молекулами чуть больше их диаметра;

молекулы - упругие шарики;

между молекулами не действуют силы притяжения;

при соударении молекул друг с другом и со стенками сосуда действуют силы отталкивают;

движения молекул подчиняется законам механики.

Основное уравнение МКТ идеального газа:

Основное уравнение МКТ позволяет вычислить давление газа, если известны масса молекулы, среднее значение квадрата скорости и концентрация молекул.

Давление идеального газа заключается в том, что молекулы при столкновениях со стенками сосуда взаимодействуют с ними по законам механики как упругие тела. При столкновении молекулы со стенкой сосуда проекция скорости v x вектора скорости на ось OX, перпендикулярную стенке, изменяет свой знак на противоположный, но остается постоянной по модулю. Поэтому в результате столкновений молекулы со стенкой проекция ее импульса на ось OX изменяется от mv 1x =-mv x до mv 2x =mv x . Изменение импульса молекулы при столкновении со стенкой вызывает сила F 1 , действующая на нее со стороны стенки. Изменение импульса молекулы равно импульсу этой силы:

Во время столкновения, согласно третьему закону Ньютона, молекула действует на стенку с силой F 2 , равной по модулю силе F 1 и направленной противоположно.

Молекул много, и каждая передает стенке при столкновении такой же импульс. За секунду они передают импульс , где z - число столкновений всех молекул со стенкой, которое пропорционально концентрации молекул в газе, скорости молекул и площади поверхности стенки: . К стенке движется только половина молекул, остальные движутся в обратную сторону: . Тогда полный импульс, переданный стенке за 1 секунду: . Согласно второму закону Ньютона изменение импульса тела за единицу времени равно действующей на него силе:

Учитывая, что не все молекулы имеют одинаковую скорость, сила, действующая на стенку будет пропорциональна среднему квадрату скорости. Так как молекулы движутся во всех направлениях, средние значения квадратов проекций скорости равны. Следовательно, средний квадрат проекции скорости: ; . Тогда давление газа на стенку сосуда равно:

- основное уравнение МКТ.

Обозначив среднее значение кинетической энергии поступательного движения молекул идеального газа:

Получим

Температура и ее измерение:

Основное уравнение МКТ для идеального газа устанавливает связь легко измеряемого макроскопического параметра - давления - с такими микроскопическими параметрами газа, как средняя кинетическая энергия и концентрация молекул. Но, измерив только давление, мы не можем узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентрацию. Следовательно, для нахождения микроскопических параметров газа нужны измерения еще какой-то физической величины, связанной со средней кинетической энергией молекул. Такой величиной является температура .

Любое макроскопическое тело или группа макроскопических тел при неизменных внешних условиях самопроизвольно переходит в состояние теплового равновесия. Тепловое равновесие - это такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными.

Температура характеризует состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Для измерения температуры можно воспользоваться изменением любой макроскопической величины в зависимости от температуры: объема, давления, электрического сопротивления и т.д.

Чаще всего на практике используют зависимость объема жидкости (ртути или спирта) от температуры. При градуировке термометра обычно за начало отсчета (0) принимают температуру тающего льда; второй постоянной точкой (100) считают температуру кипения воды при нормальном атмосферном давлении (шкала Цельсия). Так как различные жидкости расширяются при нагревании неодинаково, то установленная таким образом шкала будет до некоторой степени зависеть от свойств данной жидкости. Конечно, 0 и 100С будут совпадать у всех термометров, но 50С совпадать не будут.

В отличие от жидкостей все разреженные газы расширяются при нагревании одинаково и одинаково меняют свое давление при изменении температуры. Поэтому в физике для установления рациональной температурной шкалы используют изменение давления определенного количества разреженного газа при постоянном объеме или изменение объема газа при постоянном давлении. Такую шкалу иногда называют идеальной газовой шкалой температур .

При тепловом равновесии средняя кинетическая энергия поступательного движения молекул всех газов одинакова. Давление прямо пропорционально средней кинетической энергии поступательного движения молекул: . При тепловом равновесии, если давление газа данной массы и его объем фиксированы, средняя кинетическая энергия молекул газа должна иметь строго определенное значение, как и температура.Т. к. , то , или . Обозначим . Величина растет с повышением температуры и ни от чего, кроме температуры не зависит. Следовательно, ее можно считать естественной мерой температуры.

Абсолютная температурная шкала:

Будем считать величину , измеряемую в энергетических единицах, прямо пропорциональной температуре, выражаемой в градусах: , где - коэффициент пропорциональности. Коэффициент , в честь австрийского физика Л. Больцмана называется постоянной Больцмана. и свойств макросистем внесли немецкий физик Р. Клаузиус (1822-1888), английский физик -теоретик... , что природа тепловых явлений объясняется в физике двумя способами: термодинамический подход и молекулярно -кинетическая теория вещества...

  • Физика . Электромагнитные явления (электродинамика)

    Учебное пособие >> Физика

    ... физики и математики Физика . Электромагнитные явления ... ТЕПЛОВОЕ ИЗЛУЧЕНИЕ. 5.3.1 Характеристики теплового излучения. 5.3.2 Законы теплового ... и волны. МОДУЛЬ 2. МОЛ. ФИЗИКА И ТЕРМОДИНАМИКА. 2.1 2.1.1 Молекулярная физика . 2.2 2.2.1 Термодинамика. МОДУЛЬ №. ...

  • Механика, молекулярная физика и термодинамика

    Учебное пособие >> Физика

    0,9c. II. ОСНОВЫ МОЛЕКУЛЯРНОЙ ФИЗИКИ И ТЕРМОДИНАМИКИ Молекулярная физика и термодинамика – разделы физики , в которых изучаются... , называемые явлениями переноса. ... теплоизолированные (адиабатические) (Q=0, A0), тепловые резервуары (A=0, Q0). 2.2. Работа...

  • Механика. Молекулярная физика

    Конспект >> Физика

    Механика. Молекулярная физика . Кинематика Основные понятия и... минимальной. Поэтому энтропийные силы теплового движения, наоборот, стремятся разориентировать... качестве термометра. Явление Пельтье (1834 г.) Это явление обратно явлению Зеебека. Энергия...

  • Предназначен для проведения опытов по изучению тепловых явлений, законов молекулярно-кинетической теории и термодинамических начал с использованием цифровых датчиков температуры.

    Набор позволяет провести 13 демонстрационных экспериментов, в т.ч.:
    3. Теплота сгорания топлива
    5. Конвекция в газе
    6. Теплообмен между слоями жидкости
    7. Теплопередача за счет излучения
    9. Работа силы трения
    10. Изменение внутренней энергии при деформации тела

    Состав:

    1. Цифровые датчики температуры -20..+100 С –2шт.
    2. Цифровой датчик температуры 0...1000 С (имеет 3 диапазона измерений)
    3. Стакан термостойкий
    4. Пробирки с пробками
    5. и другое оборудование для проведения экспериментов по физике
    6. Пластиковый лоток для хранения с прозрачной крышкой
    7. Диск с программным обеспечением для проведения экспериментов

    Цифровые датчики, входящие в состав набора, совместимы с демонстрационным измерительным прибором универсальным.


    Для работы необходимы:

    * Внимание! Изображение товара может отличаться от полученного Вами товара. Производитель оставляет за собой право изменять комплектацию и технические характеристики учебных пособий без предварительного уведомления, при этом функциональные и качественные показатели наглядных пособий не ухудшаются.
    Информация о товаре носит справочный характер и не является публичной офертой, определяемой Статьей 437 ГК РФ.

    mob_info