Генератор на постоянных магнитах. Бесколлекторный синхронный генератор с постоянными магнитами Синхронный генератор с ротором на постоянных магнитах

Синхронные генераторы

с возбуждением от постоянных магнитов

(разработано в 2012 г.)

Предлагаемый генератор по принципу действия является синхронным генератором с возбуждением от постоянных магнитов. Магниты состава NeFeB, создающие магнитное поле с индукцией 1,35 Тл , расположены по окружности ротора с чередованием полюсов.

В обмотках генератора возбуждается э. д.с., амплитуда и частота которой определяются скоростью вращения ротора генератора.

Конструкция генератора не содержит коллектора с размыкаемыми контактами. Генератор также не имеет обмоток возбуждения, потребляющих дополнительный ток.

Преимущества генератора предлагаемой конструкции:

1. Обладает всеми положительными чертами синхронных генераторов с возбуждением от постоянных магнитов:

1) отсутствие токосъёмных щеток,

2) отсутствие тока возбуждения.

2. Большинство аналогичных выпускающихся в настоящее время генераторов при той же мощности имеют массо - габаритные параметров 1,5 – 3 раза больше.

3. Номинальная скорость вращения вала генератора – 1600 об ./мин . Она соответствует скорости вращения тихоходных дизельных приводов. Поэтому при переводе индивидуальных энергоустановок с бензиновых двигателей на дизельные с использованием нашего генератора, потребитель получит существенную экономию горючего и, как следствие, – стоимость киловатт-часа понизится.

4. Генератор имеет маленький стартовый момент страгивания (менее 2 Н×м ), т. е. для пуска достаточно мощности привода всего в 200 Вт , и запуск генератора возможен от самого дизеля при старте, даже без муфты сцепления. Аналогичные рыночные двигатели имеют разгонный период для создания запаса мощности при пуске генератора, т. к. при пуске бензиновый двигатель работает в режиме дефицита мощности.


5. При уровне надежности 90% ресурс генератора составляет 92 тыс. часов (10,5 лет безостановочной работы). Цикл же работы двигателя привода между капитальными ремонтами , заявляемый производителями (равно как и рыночных аналогов генератора) составляет 25 – 40 тыс. часов. То есть наш генератор по надежности на наработку превышает надежность серийных двигателей и генераторов в 2-3 раза.

6. Простота изготовления и сборки генератора – сборочным участком может быть слесарная мастерская при штучном и малосерийном производстве.

7. Простая адаптация генератора под выходное напряжение переменного тока:

1) 36 В , частота 50 – 400 Гц

2) 115 В , частота 50 – 400 Гц (аэродромные энергоустановки);

3) 220 В , частота 50 – 400 Гц ;

4) 380 В , частота 50 – 400 Гц .

Базовая конструкция генератора позволяет настраивать выпускаемое изделие на различную частоту и различное напряжение без изменения конструкции.

8. Высокая пожаробезопасность. Предлагаемый генератор не может стать источником пожара даже при коротком замыкании в цепи нагрузки или в обмотках, что заложено в конструкцию системы. Это очень важно при использовании генератора для бортовой электростанции в условиях замкнутого пространства водного судна, воздушного судна, а так же частного деревянного домостроения и т. п.

9. Низкий уровень шума.

10. Высокая ремонтопригодность.

Параметры генератора мощностью 0,5 кВт

Параметры генератора мощностью 2,5 кВт

ИТОГИ:

Предлагаемый генератор может изготавливаться для использования в электрогенераторных установках с частотой вращения вала 1500-1600 об/мин. - в дизельных, бензиновых и паро-генераторных электростанциях индивидуального пользования или в локальных энергетических системах. В паре с мультипликатором , электромеханический преобразователь энергии может использоваться и для генерации электроэнергии в низкооборотных генераторных системах, типа ветроэлектростанций, волновых электростанций и т. п. любой мощности. То есть сфера применения электро-механического преобразователя делает предлагаемый комплекс (мультипликатор-генератор) универсальным. Приведенные в тексте массогабаритные и иные электро-технические параметры дают предлагаемой конструкции явные конкурентные преимущества на рынке по сравнению с аналогами.

Заложенные в основу конструкции принципы изготовления, имеют высокую технологичность, в основе своей не требуют прецизионного станочного парка и ориентированы на массовое серийное производство. В итоге конструкция будет иметь низкую себестоимость серийного производства.

Из истории вопроса. На сегодняшний день в моей работе возник вопрос об участии в проекте по внедрению собственной малой генерации на предприятии. Ранее, был опыт работы с синхронными электродвигателями, с генераторами опыт минимальный.

Рассматривая предложения различных производителей в одном из таких открыл для себя способ возбуждения синхронного генератора при помощи подвозбудителя на основе генератора на постоянных магнитах (PMG). Обмолвлюсь, что система возбуждения генератора планируется бесщеточная. Пример синхронных электродвигателей я описывал ранее.

И так, из описания генератора (PMG) на постоянных магнитах в качестве подвозбудителя обмотки возбуждения возбудителя генератора следует:

1. Теплообменник типа «воздух-вода». 2. Генератор с постоянным магнитом. 3. Устройство возбуждения. 4. Выпрямитель. 5. Радиальный вентилятор. 6. Воздушный канал.

В данном случае система возбуждения состоит из вспомогательных обмоток или генератора с постоянным магнитом, автоматического регулятора напряжения (AVR), CT и VT для определения тока и напряжения, встроенного устройства возбуждения и вращающегося выпрямителя. В стандартном случае турбогенераторы оборудованы цифровым AVR, обеспечивающим регулирование PF (коэффициента мощности) и выполнение различных функций мониторинга и защиты (ограничение возбуждения, обнаружение перегрузки, возможность резервирования и т.д.). Постоянный ток возбуждения, идущий от AVR, усиливается вращающимся устройством возбуждения и затем выпрямляется вращающимся выпрямителем. Вращающийся выпрямитель состоит из диодов и стабилизаторов напряжения.

Схематичные изображение системы возбуждения турбогенератора с использованием PMG:

Решение с применением генератора на постоянных магнитах (PMG) на главном валу с ротором генератора и бесщеточным возбудителем:

Собственно, на данный момент говорить о преимуществах данного способа регулирования возбуждения для меня не представляется возможным. Думаю, со временем набора информации и опыта поделюсь с вами своим опытом применения PMG.

Изобретение относится к области электротехники и электромашиностроения, в частности к синхронным генераторам с возбуждением от постоянных магнитов. Технический результат - расширение эксплуатационных параметров синхронного генератора путем обеспечения возможности регулирования как его активной мощности, так и выходного напряжения переменного тока, а также обеспечения возможности использования его в качестве источника сварочного тока при проведении электродуговой сварки на различных режимах. Синхронный генератор с возбуждением от постоянных магнитов содержит несущий узел статора с опорными подшипниками (1, 2, 3, 4), на котором смонтирована группа кольцевых магнитопроводов (5) с полюсными выступами по периферии, снабженными размещенными на них электрическими катушками (6) с многофазными якорными обмотками (7) и (8) статора, установленную на опорном валу (9) с возможностью вращения в опорных подшипниках (1, 2, 3, 4) вокруг несущего узла статора группу кольцевых роторов (10) со смонтированными на внутренних боковых стенках кольцевыми магнитными вкладышами (11) с чередующимися в окружном направлении магнитными полюсами из p-пар, охватывающими полюсные выступы с электрическими катушками (6) якорных обмоток (7, 8) кольцевого магнитопровода статора. Несущий узел статора выполнен из группы одинаковых модулей. Модули несущего узла статора установлены с возможностью их разворота друг относительно друга вокруг оси, сосной с опорным валом (9), и снабжены кинематически связанным с ними приводом углового разворота их друг относительно друга, а одноименные фазы якорных обмоток упомянутых модулей соединены между собой, образуя общие фазы якорной обмотки статора. 5 з.п. ф-лы, 3 ил.

Рисунки к патенту РФ 2273942

Изобретение относится к области электромашиностроения, в частности к синхронным генераторам с возбуждением от постоянных магнитов, и может быть использовано в автономных источниках электроэнергии на автомобилях, катерах, а также в автономных источниках электропитания потребителей переменным током как стандартной промышленной частоты, так и повышенной частоты и в автономных энергоустановках в качестве источника сварочного тока для проведения электродуговой сварки в полевых условиях.

Известен синхронный генератор с возбуждением от постоянных магнитов, содержащий несущий узел статора с опорными подшипниками, на котором смонтирован кольцевой магнитопровод с полюсными выступами по периферии, снабженными размещенными на них электрическими катушками с якорной обмоткой статора, а также установленный на опорном валу с возможностью вращения в упомянутых опорных подшипниках ротор с постоянными магнитами возбуждения (см., напр., А.И.Вольдек, "Электрические машины", изд. Энергия, Ленинградское отделение, 1974 г., с.794).

Недостатками известного синхронного генератора являются значительная металлоемкость и большие габариты, обусловленные значительными металлоемкостью и габаритами массивного цилиндрической формы ротора, выполненного с постоянными магнитами возбуждения из магнитотвердых сплавов (типа ални, алнико, магнико и др.).

Известен также синхронный генератор с возбуждением от постоянных магнитов, содержащий несущий узел статора с опорными подшипниками, на котором смонтирован кольцевой магнитопровод с полюсными выступами по периферии, снабженными размещенными на них электрическими катушками с якорной обмоткой статора, установленный с возможностью вращения вокруг кольцевого магнитопровода статора кольцевой ротор со смонтированным на внутренней боковой стенке кольцевым магнитным вкладышем с чередующимися в окружном направлении магнитными полюсами, охватывающий полюсные выступы с электрическими катушками якорной обмотки указанного кольцевого магнитопровода статора (см., напр., патент РФ № 2141716, кл. Н 02 К 21/12 по заявке № 4831043/09 от 02.03.1988 г.).

Недостатком известного синхронного генератора с возбуждением от постоянных магнитов являются узкие эксплуатационные параметры, обусловленные отсутствием возможности регулирования активной мощности синхронного генератора, поскольку в конструктивном исполнении данного синхронного индукторного генератора отсутствует возможность оперативного изменения величины общего магнитного потока, создаваемого отдельными постоянными магнитами указанного кольцевого магнитного вкладыша.

Наиболее близким аналогом (прототипом) является синхронный генератор с возбуждением от постоянных магнитов, содержащий несущий узел статора с опорными подшипниками, на котором смонтирован кольцевой магнитопровод с полюсными выступами по периферии, снабженными размещенными на них электрическими катушками с многофазной якорной обмоткой статора, установленный на опорном валу с возможностью вращения в упомянутых опорных подшипниках вокруг кольцевого магнитопровода статора кольцевой ротор со смонтированным на внутренней боковой стенке кольцевым магнитным вкладышем с чередующимися в окружном направлении магнитными полюсами из p-пар, охватывающим полюсные выступы с электрическими катушками якорной обмотки указанного кольцевого магнитопровода статора (см. патент РФ № 2069441, кл. Н 02 К 21/22 по заявке № 4894702/07 от 01.06.1990 г.).

Недостатком известного синхронного генератора с возбуждением от постоянных магнитов являются также узкие эксплуатационные параметры, обусловленные как отсутствием возможности регулирования активной мощности синхронного индукторного генератора, так и отсутствием возможности регулирования величины выходного напряжения переменного тока, что затрудняет возможность использования его в качестве источника сварочного тока при электродуговой сварке (в конструкции известного синхронного генератора отсутствует возможность оперативного изменения величины общего магнитного потока отдельных постоянных магнитов, образующих между собой кольцевой магнитный вкладыш).

Целью настоящего изобретения является расширение эксплуатационных параметров синхронного генератора путем обеспечения возможности регулирования как его активной мощности, так и возможности регулирования напряжения переменного тока, а также обеспечения возможности использования его в качестве источника сварочного тока при проведении электродуговой сварки на различных режимах.

Поставленная цель достигается тем, что синхронный генератор с возбуждением от постоянных магнитов, содержащий несущий узел статора с опорными подшипниками, на котором смонтирован кольцевой магнитопровод с полюсными выступами по периферии, снабженными размещенными на них электрическими катушками с многофазной якорной обмоткой статора, установленный на опорном валу с возможностью вращения в упомянутых опорных подшипниках вокруг кольцевого магнитопровода статора кольцевой ротор со смонтированным на внутренней боковой стенке кольцевым магнитным вкладышем с чередующимися в окружном направлении магнитными полюсами из p-пар, охватывающим полюсные выступы с электрическими катушками якорной обмотки указанного кольцевого магнитопровода статора, в нем несущий узел статора выполнен из группы одинаковых модулей с указанными кольцевым магнитопроводом и кольцевым ротором, смонтированных на одном опорном валу с возможностью их разворота друг относительно друга вокруг оси, соосной с опорным валом, и снабжены кинематически связанным с ними приводом углового разворота их друг относительно друга, а одноименные фазы якорных обмоток в модулях несущего узла статора соединены между собой, образуя общие фазы якорной обмотки статора.

Дополнительным отличием предложенного синхронного генератора с возбуждением от постоянных магнитов является то, что одноименные магнитные полюсы кольцевых магнитных вкладышей кольцевых роторов в смежных модулях несущего узла статора расположены конгруэнтно друг другу в одних радиальных плоскостях, а концы фаз якорной обмотки в одном модуле несущего узла статора соединены с началами одноименных фаз якорной обмотки в другом смежном модуле несущего узла статора, образуя в соединении между собой общие фазы якорной обмотки статора.

Кроме того, каждый из модулей несущего узла статора включает кольцевую втулку с наружным упорным фланцем и стакан с центральным отверстием в торце, а кольцевой ротор в каждом из модулей несущего узла статора включает кольцевую обечайку с внутренним упорным фланцем, в которой установлен упомянутый соответствующий кольцевой магнитный вкладыш, при этом указанные кольцевые втулки модулей несущего узла статора сопряжены своей внутренней цилиндрической боковой стенкой с одними из упомянутых опорных подшипников, другие из которых сопряжены со стенками центральных отверстий в торцах указанных соответствующих стаканов, кольцевые обечайки кольцевого ротора жестко соединены с опорным валом посредством крепежных узлов, а кольцевой магнитопровод в соответствующем модуле несущего узла статора смонтирован на указанной кольцевой втулке, жестко скрепленной своим наружным упорным фланцем с боковой цилиндрической стенкой стакана и образующей совместно с последним кольцевую полость, в которой размещен указанный соответствующий кольцевой магнитопровод с электрическими катушками соответствующей якорной обмотки статора. Дополнительным отличием предложенного синхронного генератора с возбуждением от постоянных магнитов является то, что каждый из крепежных узлов, соединяющих кольцевую обечайку кольцевого ротора с опорным валом, включает смонтированную на опорном валу ступицу с фланцем, жестко скрепленным с внутренним упорным фланцем соответствующей кольцевой обечайки.

Дополнительным отличием предложенного синхронного генератора с возбуждением от постоянных магнитов является то, что привод углового разворота модулей несущего узла статора друг относительно друга смонтирован посредством опорного узла на модулях несущего узла статора.

Кроме того, привод углового разворота друг относительно друга модулей несущего узла статора выполнен в виде винтового механизма с ходовым винтом и гайкой, а опорный узел привода углового разворота секций несущего узла статора включает закрепленные на одном из упомянутых стаканов опорную проушину, а на другом стакане опорную планку, при этом ходовой винт шарнирно связан двухстепенным шарниром одним концом посредством оси, параллельной оси упомянутого опорного вала, с указанной опорной планкой, выполненной с расположенной по дуге окружности направляющей прорезью, а гайка винтового механизма шарнирно связана одним концом с упомянутой проушиной, выполнена на другом конце с хвостовиком, пропущенным через направляющую прорезь в опорной планке, и снабжена стопорным элементом.

Сущность изобретения поясняется чертежами.

На фиг.1 изображен общий вид предложенного синхронного генератора с возбуждением от постоянных магнитов в продольном разрезе;

На фиг.2 - вид А на фиг.1;

На фиг.3 изображена схематически магнитная цепь возбуждения синхронного генератора в варианте исполнения с трехфазными электрическими цепями якорных обмоток статора в исходном начальном положении (без углового смещения соответствующих одноименных фаз в модулях несущего узла статора) для числа пар полюсов статора р=8;

На фиг.4 - то же, с фазами трехфазных электрических цепей якорных обмоток статора, развернутыми друг относительно друга в угловом положении на угол, равный 360/2р градусов;

На фиг.5 изображен вариант электрической схемы соединений якорных обмоток статора синхронного генератора с соединением фаз генератора звездой и последовательным соединением одноименных фаз в общих образованных ими фазах;

На фиг.6 изображен другой вариант электрической схемы соединений якорных обмоток статора синхронного генератора с соединением фаз генератора треугольником и последовательным соединением одноименных фаз в общих образованных ими фазах;

На фиг.7 изображена схематически векторная диаграмма изменения величины фазных напряжений синхронного генератора при угловом развороте соответствующих одноименных фаз якорных обмоток статора (соответственно и модулей несущего узла статора) на соответствующий угол и при соединении указанных фаз по схеме "звезда";

На фиг.8 - то же, при соединении фаз якорных обмоток статора по схеме "треугольник";

На фиг.9 изображена диаграмма с графиком зависимости выходного линейного напряжения синхронного генератора от геометрического угла разворота одноименных фаз якорных обмоток статора с приведением соответствующего электрического угла поворота вектора напряжения в фазе для соединения фаз по схеме "звезда";

На фиг.10 изображена диаграмма с графиком зависимости выходного линейного напряжения синхронного генератора от геометрического угла разворота одноименных фаз якорных обмоток статора с приведением соответствующего электрического угла поворота вектора напряжения в фазе для соединения фаз по схеме "треугольник".

Синхронный генератор с возбуждением от постоянных магнитов содержит несущий узел статора с опорными подшипниками 1, 2, 3, 4, на котором смонтирована группа одинаковых кольцевых магнитопроводов 5 (например, в виде монолитных дисков из порошкового композиционного магнитомягкого материала) с полюсными выступами по периферии, снабженными размещенными на них электрическими катушками 6 с многофазными (например, трехфазными, а в общем случае m-фазными) якорными обмотками 7, 8 статора, установленную на опорном валу 9 с возможностью вращения в упомянутых опорных подшипниках 1, 2, 3, 4 вокруг несущего узла статора группу одинаковых кольцевых роторов 10, со смонтированными на внутренних боковых стенках кольцевыми магнитными вкладышами 11 (например, в виде монолитных магнитных колец из порошкового магнитоанизотропного материала) с чередующимися в окружном направлении магнитными полюсами из p-пар (в данном варианте исполнения генератора число пар p магнитных полюсов равно 8), охватывающими полюсные выступы с электрическими катушками 6 якорных обмоток 7, 8 указанных кольцевых магнитопроводов 5 статора. Несущий узел статора выполнен из группы одинаковых модулей, каждый из которых включает кольцевую втулку 12 с наружным упорным фланцем 13 и стакан 14 с центральным отверстием "а" в торце 15 и с боковой цилиндрической стенкой 16. Каждый из кольцевых роторов 10 включает кольцевую обечайку 17 с внутренним упорным фланцем 18. Кольцевые втулки 12 модулей несущего узла статора сопряжены своей внутренней цилиндрической боковой стенкой с одними из упомянутых опорных подшипников (с опорными подшипниками 1, 3), другие из которых (опорные подшипники 2, 4) сопряжены со стенками центральных отверстий "а" в торцах 15 указанных соответствующих стаканов 14. Кольцевые обечайки 17 кольцевых роторов 10 жестко соединены с опорным валом 9 посредством крепежных узлов, а каждый из кольцевых магнитопроводов 5 в соответствующем модуле несущего узла статора смонтирован на указанной кольцевой втулке 12, жестко скрепленной своим наружным упорным фланцем 13 с боковой цилиндрической стенкой 16 стакана 14 и образующей совместно с последним кольцевую полость "б", в которой размещен указанный соответствующий кольцевой магнитопровод 5 с электрическими катушками 6 соответствующей якорной обмотки (якорные обмотки 7, 8) статора. Модули несущего узла статора (образующие эти модули кольцевые втулки 12 со стаканами 14) установлены с возможностью их разворота друг относительно друга вокруг оси, соосной с опорным валом 9, и снабжены кинематически связанным с ними приводом углового разворота их друг относительно друга, смонтированным посредством опорного узла на модулях несущего узла статора. Каждый из крепежных узлов, соединяющих кольцевую обечайку 17 соответствующего кольцевого ротора 10 с опорным валом 9, включает смонтированную на опорном валу 9 ступицу 19 с фланцем 20, жестко скрепленным с внутренним упорным фланцем 18 соответствующей кольцевой обечайки 17. Привод углового разворота модулей несущего узла статора друг относительно друга в представленном частном варианте исполнения выполнен в виде винтового механизма с ходовым винтом 21 и гайкой 22, а опорный узел привода углового разворота секций несущего узла статора включает закрепленные на одном из упомянутых стаканов 14 опорную проушину 23, а на другом стакане 14 опорную планку 24. Ходовой винт 21 шарнирно связан двухстепенным шарниром (шарниром с двумя степенями свободы) одним концом "в" посредством оси 25, параллельной оси O-O1 упомянутого опорного вала 9, с указанной опорной планкой 24, выполненной с расположенной по дуге окружности направляющей прорезью "г", а гайка 22 винтового механизма шарнирно связана одним концом с упомянутой опорной проушиной 23, выполнена на другом конце с хвостовиком 26, пропущенным через направляющую прорезь "г" в опорной планке 24, и снабжена стопорным элементом 27 (стопорной гайкой). На конце гайки 22, шарнирно связанном с опорной проушиной 23, установлен дополнительный стопорный элемент 28 (дополнительная стопорная гайка). Опорный вал 9 снабжен вентиляторами 29 и 30 охлаждения якорных обмоток 7, 8 статора, один из которых (29) расположен на одном из концов опорного вала 9, а другой (30) размещен между секциями несущего узла статора и смонтирован на опорном валу 9. Кольцевые втулки 12 секций несущего узла статора выполнены с вентиляционными отверстиями "д" на наружных упорных фланцах 13 для прохождения потока воздуха в соответствующие кольцевые полости "б", образованные кольцевыми втулками 12 и стаканами 14, и для охлаждения тем самым якорных обмоток 7 и 8, размещенных в электрических катушках 6 на полюсных выступах кольцевых магнитопроводов 5. На конце опорного вала 9, на котором расположен вентилятор 29, смонтирован шкив 31 клиноременной передачи для приведения во вращение кольцевых роторов 10 синхронного генератора. Вентилятор 29 закреплен непосредственно на шкиве 31 клиноременной передачи. На другом конце ходового винта 21 винтового механизма установлена рукоятка 32 ручного управления винтовым механизмом привода углового разворота модулей несущего узла статора друг относительно друга. Одноименные фазы (А1, В1, С1 и А2, В2, С2) якорных обмоток в кольцевых магнитопроводах 5 модулей несущего узла статора соединены между собой, образуя общие фазы генератора (соединение одноименных фаз в общем виде как последовательное, так и параллельное, а также компаундное). Одноименные магнитные полюсы ("северные" и соответственно "южные") кольцевых магнитных вкладышей 11 кольцевых роторов 10 в смежных модулях несущего узла статора расположены конгруэнтно друг другу в одних радиальных плоскостях. В представленном варианте исполнения концы фаз (A1, B1, C1) якорной обмотки (обмотки 7) в кольцевом магнитопроводе 5 одного модуля несущего узла статора соединены с началами одноименных фаз (А2, В2, С2) якорной обмотки (обмотки 8) в смежном другом модуле несущего узла статора, образуя в последовательном соединении между собой общие фазы якорной обмотки статора.

Синхронный генератор с возбуждением от постоянных магнитов работает следующим образом.

От привода (например, от двигателя внутреннего сгорания, преимущественно дизеля, на чертеже не показано) через шкив 31 клиноременной передачи вращательное движение передается к опорному валу 9 с кольцевыми роторами 10. При вращении кольцевых роторов 10 (кольцевых обечаек 17) с кольцевыми магнитными вкладышами 11 (например, монолитными магнитными кольцами из порошкового магнитоанизотропного материала) создаются вращающиеся магнитные потоки, пронизывающие воздушный кольцевой зазор между кольцевыми магнитными вкладышами 11 и кольцевыми магнитопроводами 5 (например, монолитными дисками из порошкового композиционного магнитомягкого материала) модулей несущего узла статора, а также пронизывающие радиальные полюсные выступы (на чертеже условно не показаны) кольцевых магнитопроводов 5. При вращении кольцевых роторов 10 осуществляется также попеременное прохождение "северных" и "южных" чередующихся магнитных полюсов кольцевых магнитных вкладышей 11 над радиальными полюсными выступами кольцевых магнитопроводов 5 модулей несущего узла статора, вызывающее пульсации вращающегося магнитного потока как по величине, так и по направлению в радиальных полюсных выступах указанных кольцевых магнитопроводов 5. При этом в якорных обмотках 7 и 8 статора наводятся переменные электродвижущие силы (ЭДС) с взаимным сдвигом по фазе в каждой из m-фазных якорных обмоток 7 и 8 на угол, равный 360/m электрических градусов, а для представленных трехфазных якорных обмоток 7 и 8 в фазах их (А1, В1, С1 и А2, В2, С2) индуктируются синусоидальные переменные электродвижущие силы (ЭДС) со сдвигом по фазе между собой на угол 120 градусов и с частотой, равной произведению числа пар (р) магнитных полюсов в кольцевом магнитном вкладыше 11 на частоту вращения кольцевых роторов 10 (для числа пар магнитных полюсов р=8 индуктируются переменные ЭДС преимущественно повышенной частоты, например с частотой 400 Гц). Переменный ток (например, трехфазный или в общем случае m-фазный), протекающий по общей якорной обмотке статора, образованной указанным выше соединением между собой одноименных фаз (А1, В1, С1 и А2, В2, С2) якорных обмоток 7 и 8 в смежных кольцевых магнитопроводах 5, подается на выходные электрические силовые разъемы (на чертеже не показаны) для подключения приемников электрической энергии переменного тока (например, для подключения электродвигателей, электроинструмента, электронасосов, нагревательных приборов, а также для подключения электросварочного оборудования и т.д.). В представленном варианте исполнения синхронного генератора выходное фазное напряжение (Uф) в общей якорной обмотке статора (образованной соответствующим указанным выше соединением между собой одноименных фаз якорных обмоток 7 и 8 в кольцевых магнитопроводах 5) в исходном начальном положении модулей несущего узла статора (без углового смещения друг относительно друга этих модулей несущего узла статора и соответственно без углового смещения друг относительно друга кольцевых магнитопроводов 5 с полюсными выступами по периферии) равно сумме по модулю отдельных фазных напряжений (Uф1 и Uф2) в якорных обмотках 7 и 8 кольцевых магнитопроводов модулей несущего узла статора (в общем случае суммарное выходное фазное напряжение Uф генератора равно геометрической сумме векторов напряжений в отдельных одноименных фазах А1, В1, С1 и А2, В2, С2 якорных обмоток 7 и 8, см. фиг.7 и 8 с диаграммами напряжений). При необходимости изменения (уменьшения) величины выходного фазного напряжения Uф (и соответственно выходного линейного напряжения U л) представленного синхронного генератора для питания определенных приемников электроэнергии с пониженным напряжением (например, для электродуговой сварки переменным током на определенных режимах) осуществляется угловой разворот отдельных модулей несущего узла статора друг относительно друга на определенный угол (заданный или оттарированный). При этом стопорный элемент 27 гайки 22 винтового механизма привода углового разворота модулей несущего узла статора расфиксируется и посредством рукоятки 32 приводится во вращение ходовой винт 21 винтового механизма, вследствие чего осуществляется угловое перемещение гайки 22 по дуге окружности в прорези "г" опорной планки 24 и разворот на заданный угол одного из модулей несущего узла статора по отношению к другому модулю этого несущего узла статора вокруг оси O-O1 опорного вала 9 (в представленном варианте исполнения синхронного индукторного генератора осуществляется разворот модуля несущего узла статора, на котором смонтирована опорная проушина 23, при этом другой модуль несущего узла статора с опорной планкой 24, имеющей прорезь "г", находится в неподвижном положении, т.е. закреплен на каком-либо основании, на представленном чертеже условно не показано). При угловом развороте модулей несущего узла статора (кольцевых втулок 12 со стаканами 14) друг относительно друга вокруг оси O-O1 опорного вала 9 осуществляется также разворот кольцевых магнитопроводов 5 с полюсными выступами по периферии друг относительно друга на заданный угол, вследствие чего осуществляется также и разворот на заданный угол друг относительно друга вокруг оси O-O1 опорного вала 9 самих полюсных выступов (на чертеже условно не показаны) с электрическими катушками 6 многофазных (в данном случае трехфазных) якорных обмоток 7 и 8 статора в кольцевых магнитопроводах. При развороте полюсных выступов кольцевых магнитопроводов 5 друг относительно друга на заданный угол в пределах 360/2р градусов происходит пропорциональный поворот векторов фазных напряжений в якорной обмотке подвижного модуля несущего узла статора (в данном случае происходит поворот векторов фазных напряжений Uф2 в якорной обмотке 7 модуля несущего узла статора, имеющей возможность углового разворота) на вполне определенный угол в пределах 0-180 электрических градусов (см. фиг.7 и 8), что приводит к изменению результирующего выходного фазного напряжения Uф синхронного генератора в зависимости от электрического угла поворота векторов фазных напряжений Uф2 в фазах А2, В2, С2 одной якорной обмотки 7 статора относительно векторов фазных напряжений Uф1 в фазах A1, B1, C1 другой якорной обмотки 8 статора (данная зависимость имеет расчетный характер, вычисляемый решением косоугольных треугольников и определяется следующим выражением:

Диапазон регулирования выходного результирующего фазного напряжения Uф представленного синхронного генератора для случая, когда Uф1=Uф2, будет изменяться от 2Uф1 до 0, а для случая, когда Uф2

Выполнение несущего узла статора из группы одинаковых модулей с указанными кольцевым магнитопроводом 5 и кольцевым ротором 10, смонтированных на одном опорном валу 9, а также установка модулей несущего узла статора с возможностью их разворота друг относительно друга вокруг оси, соосной с опорным валом 9, снабжение модулей несущего узла статора кинематически связанным с ними приводом углового разворота их друг относительно друга и соединение между собой одноименных фаз якорных обмоток 7 и 8 в модулях несущего узла статора с образованием общих фаз якорной обмотки статора позволяют расширить эксплуатационные параметры синхронного генератора за счет обеспечения возможности регулирования как его активной мощности, так и обеспечения возможности регулирования выходного напряжения переменного тока, а также обеспечения возможности использования его в качестве источника сварочного тока при проведении электродуговой сварки на различных режимах (путем обеспечения возможности регулирования величины сдвига фаз напряжения в одноименных фазах А1, В1, С1 и А2, В2, С2, а в общем случае в фазах Ai, Bi, Ci якорных обмоток статора в предложенном синхронном генераторе). Предложенный синхронный генератор с возбуждением от постоянных магнитов может быть использован при соответствующей коммутации якорных обмоток статора для снабжения электроэнергией самых различных приемников переменного многофазного электрического тока с различными параметрами питающего напряжения. Кроме того, дополнительное расположение одноименных магнитных полюсов ("северный" и соответственно "южный") кольцевых магнитных вкладышей 11 в смежных кольцевых роторах 10 конгруэнтно друг другу в одних радиальных плоскостях, а также соединение концов фаз A1, B1, C1 якорной обмотки 7 в кольцевом магнитопроводе 5 одного модуля несущего узла статора с началами одноименных фаз А2, В2, С2 якорной обмотки 8 в смежном модуле несущего узла статора (последовательное соединение между собой одноименных фаз якорной обмотки статора) обуславливают возможность обеспечения плавного и эффективного регулирования выходного напряжения синхронного генератора от максимального значения (2U ф1, а в общем случае для числа n секций несущего узла статора nU ф1) до 0, что может быть использовано также для снабжения электроэнергией специальных электрических машин и установок.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Синхронный генератор с возбуждением от постоянных магнитов, содержащий несущий узел статора с опорными подшипниками, на котором смонтирован кольцевой магнитопровод с полюсными выступами по периферии, снабженными размещенными на них электрическими катушками с многофазной якорной обмоткой статора, установленный на опорном валу с возможностью вращения в упомянутых опорных подшипниках вокруг кольцевого магнитопровода статора кольцевой ротор со смонтированным на внутренней боковой стенке кольцевым магнитным вкладышем с чередующимися в окружном направлении магнитными полюсами из p-пар, охватывающим полюсные выступы с электрическими катушками якорной обмотки указанного кольцевого магнитопровода статора, отличающийся тем, что несущий узел статора выполнен из группы одинаковых модулей с указанными кольцевым магнитопроводом и кольцевым ротором, смонтированными на одном опорном валу, при этом модули несущего узла статора установлены с возможностью их разворота друг относительно друга вокруг оси, соосной с опорным валом, и снабжены кинематически связанным с ними приводом углового разворота их друг относительно друга, а одноименные фазы якорных обмоток в модулях несущего узла статора соединены между собой, образуя общие фазы якорной обмотки статора.

2. Синхронный генератор с возбуждением от постоянных магнитов по п.1, отличающийся тем, что одноименные магнитные полюсы кольцевых магнитных вкладышей кольцевых роторов в смежных модулях несущего узла статора расположены конгруэнтно друг другу в одних радиальных плоскостях, а концы фаз якорной обмотки в одном модуле несущего узла статора соединены с началами одноименных фаз якорной обмотки в другом, смежном модуле несущего узла статора, образуя в соединении между собой общие фазы якорной обмотки статора.

3. Синхронный генератор с возбуждением от постоянных магнитов по п.1, отличающийся тем, что каждый из модулей несущего узла статора включает кольцевую втулку с наружным упорным фланцем и стакан с центральным отверстием в торце, а кольцевой ротор в каждом из модулей несущего узла статора включает кольцевую обечайку с внутренним упорным фланцем, в которой установлен упомянутый соответствующий кольцевой магнитный вкладыш, при этом указанные кольцевые втулки модулей несущего узла статора сопряжены своей внутренней цилиндрической боковой стенкой с одними из упомянутых опорных подшипников, другие из которых сопряжены со стенками центральных отверстий в торцах указанных соответствующих стаканов, кольцевые обечайки кольцевого ротора жестко соединены с опорным валом посредством крепежных узлов, а кольцевой магнитопровод в соответствующем модуле несущего узла статора смонтирован на указанной кольцевой втулке, жестко скрепленной своим наружным упорным фланцем с боковой цилиндрической стенкой стакана и образующей совместно с последним кольцевую полость, в которой размещен указанный соответствующий кольцевой магнитопровод с электрическими катушками соответствующей якорной обмотки статора.

4. Синхронный генератор с возбуждением от постоянных магнитов по любому из пп.1-3, отличающийся тем, что каждый из крепежных узлов, соединяющих кольцевую обечайку кольцевого ротора с опорным валом, включает смонтированную на опорном валу ступицу с фланцем, жестко скрепленным с внутренним упорным фланцем соответствующей кольцевой обечайки.

5. Синхронный генератор с возбуждением от постоянных магнитов по п.4, отличающийся тем, что привод углового разворота модулей несущего узла статора друг относительно друга смонтирован посредством опорного узла на модулях несущего узла статора.

6. Синхронный генератор с возбуждением от постоянных магнитов по п.5, отличающийся тем, что привод углового разворота друг относительно друга модулей несущего узла статора выполнен в виде винтового механизма с ходовым винтом и гайкой, а опорный узел привода углового разворота модулей несущего узла статора включает закрепленные на одном из упомянутых стаканов опорную проушину, а на другом стакане опорную планку, при этом ходовой винт шарнирно связан двухстепенным шарниром одним концом посредством оси, параллельной оси упомянутого опорного вала, с указанной опорной планкой, выполненной с расположенной по дуге окружности направляющей прорезью, а гайка винтового механизма шарнирно связана одним концом с упомянутой проушиной, выполнена на другом конце с хвостовиком, пропущенным через направляющую прорезь в опорной планке, и снабжена стопорным элементом.

Синхронные машины с постоянными магнита­ми (магнитоэлектрические) не имеют обмотки воз­буждения на роторе, а возбуждающий магнитный поток у них создается постоянными магнитами, рас­положенными на роторе. Статор этих машин обыч­ной конструкции с двух- или трехфазной обмоткой.

Применяют эти машины чаще всего в качестве двигателей небольшой мощности. Синхронные ге­нераторы с постоянными магнитами применяют ре­же, главным образом в качестве автономно рабо­тающих генераторов повышенной частоты, малой и средней мощности.

Синхронные магнитоэлектрические двигате­ли. Эти двигатели получили распространение в двух конструктивных исполнениях: с радиальным и акси­альным расположением постоянных магнитов.

При радиальном расположении по­стоянных магнитов пакет ротора с пусковой клет­кой, выполненный в виде полого цилиндра, закреп­ляют на наружной поверхности явно выраженных полюсов постоянного магнита 3. В цилиндре делают межполюсные прорези, предотвращающие замыка­ние потока постоянного магнита в этом цилиндре (рис. 23.1, ).

При аксиальном расположении маг­нитов конструкция ротора аналогична конструкции ротора асинхронного короткозамкнутого двигателя. К торцам этого ротора прижаты кольцевые постоян­ные магниты (рис. 23.1, ).

Конструкции с аксиальным расположением маг­нита применяют в двигателях малого диаметра мощностью до 100 Вт; конструкции с радиальным расположением магнитов применяют в двигателях большего диаметра мощностью до 500 Вт и более.

Физические процессы, протекающие при асин­хронном пуске этих двигателей, имеют некоторую осо­бенность, обусловленную тем, что магнитоэлектриче­ские двигатели пускают в возбужденном состоянии. Поле постоянного магнита в процессе разгона ротора наводит в обмотке статора ЭДС
, частота которой увеличивается пропор­ционально частоте вращения ротора. Эта ЭДС наводит в обмотке статора ток, взаимодействующий с полем постоянных магнитов и создающий тормозной момент
, направленный встречно вращению ротора.

Рис. 23.1. Магнитоэлектрические синхронные двигатели с радиальным (а) и

аксиальным (б) расположением постоянных магнитов:

1 - статор, 2 - короткозамкнутый ротор, 3 - постоянный магнит

Таким образом, при разгоне двигателя с постоянными магни­тами на его ротор действуют два асинхронных момента (рис. 23.2): вращающий
(от тока , поступающего в обмотку статора из сети) и тормозной
(от тока , наведенного в обмотке статораполем постоянного магнита).

Однако зависимость этих моментов от частоты вращения ро­тора (скольжения) различна: максимум вращающего момента
соответствует значительной частоте (небольшому скольжению), а максимум тормозного момента М Т - малой частоте вращения (большому скольжению). Разгон ротора происходит под действи­ем результирующего момента
, который имеет зна­чительный «провал» в зоне малых частот вращения. Из приведен­ных на рисунке кривых видно, что влияние момента
на пусковые свойства двигателя, в частности на момент входа в син­хронизм М вх , значительно.

Для обеспечения надежного пуска двигателя необходимо, чтобы минимальный результирующий момент в асинхронном ре­жиме
и момент входа в синхронизмМ вх , были больше момента нагрузки. Форма кривой асинхронного момента магнитоэлектри­ческого

Рис.23.2. Графики асинхронных моментов

магнитоэлектрического синхронного двигателя

двигателя в значительной степени зависит от активного сопротивления пусковой клетки и от степени возбужденности дви­гателя, характеризуемой величиной
, гдеЕ 0 - ЭДС фазы статора, наведенная в режиме холостого хода при вра­щении ротора с синхронной частотой. С увеличением «провал»в кривой момента
увеличивается.

Электромагнитные процессы в магнитоэлектрических син­хронных двигателях в принципе аналогичны процессам в син­хронных двигателях с электромагнитным возбуждением. Однако необходимо иметь в виду, что постоянные магниты в магнито­электрических машинах подвержены размагничиванию действием магнитного потока реакции якоря. Пусковая обмотка несколько ослабляет это размагничивание, так как оказывает на постоянные магниты экранирующее действие.

Положительные свойства магнитоэлектрических синхронных двигателей - повышенная устойчивость работы в синхронном режиме и равномерность частоты вращения, а также способность синфазного вращения нескольких двигателей, включенных в одну сеть. Эти двигатели имеют сравнительно высокие энергетические показатели (КПД и
,).

Недостатки магнитоэлектрических синхронных двигателей - повышенная стоимость по сравнению с синхронными двигателями других типов, обусловленная высокой стоимостью и сложностью обработки постоянных магнитов, выполняемых из сплавов, обла­дающих большой коэрцитивной силой (ални, алнико, магнико и др.). Эти двигатели обычно изго­товляют на небольшие мощности и применяют в приборостроении и в устройствах автоматики для привода механизмов, требующих по­стоянства частоты вращения.

Синхронные магнитоэлек­ трические генераторы . Ротор та­кого генератора выполняют при малой мощности в виде «звездоч­ки» (рис. 23.3, а ), при средней мощности - с когтеобразными полюсами и цилиндрическим постоянным магнитом (рис. 23.3, б). Ротор с когтеобразными полюсами дает возможность получить генератор с рассеянием полюсов, ограничивающим ударный ток при внезапном коротком замыкании генератора. Этот ток представляет большую опасность для постоянного магнита ввиду сильного размагничивающего действия.

Помимо недостатков, отмеченных при рассмотрении магнитоэлектрических синхронных двигателей, генераторы с постоянны­ми магнитами имеют еще один недостаток, обусловленный отсутствием обмотки возбуждения, а поэтому регулировка напряжения в магнитоэлектрических генераторах практически невозможна. Это затрудняет стабилизацию напряжения генератора при измене­ниях нагрузки.

Рис.23.3. Роторы магнитоэлектрических синхронных генераторов:

1 – вал; 2 – постоянный магнит; 3 – полюс; 4 – немагнитная втулка

mob_info