Синхронные машины с постоянными магнитами. Экспериментальные исследования энергетической эффективности сверхединичных синхронных генераторов на постоянных магнитах Синхронный генератор переменного на магнитах

Бесконтактные синхронные генераторы с постоянными магнитами (СГПМ) имеют простую электрическую схему, не потребляют энергии на возбуждение и имеют повышенный КПД, отличаются высокой надежностью работы, менее чувствительны к действию реакции якоря, чем обычные машины, их недостатки связаны с невысокими регулирующими свойствами через то, что рабочий поток постоянных магнитов нельзя изменять в широких пределах. Однако во многих случаях эта особенность не является определяющей и не препятствует широкому их применению.

Большинство СГПМ, применяемых в настоящее время, имеют магнитную систему с постоянными магнитами, которые вращаются. Поэтому магнитные системы отличаются друг от друга в основном конструкцией ротора (индуктора). Статор же СГПМ имеет практически такую ​​же конструкцию, что и в классических машинах переменного тока, обычно он содержит набранный из листов электротехнической стали цилиндрический магнитопровод, на внутренней поверхности которого расположены пазы для размещения обмотки якоря. В отличие от обычных синхронных машин рабочий промежуток между статором и ротором в СГПМ выбирают минимальным, исходя из технологических возможностей. Конструкция ротора в значительной степени определяется магнитными и технологическими свойствами магнитотвердые материала.

Ротор с цилиндрическим магнитом

Наиболее простым является ротор с монолитным цилиндрическим магнитом кольцеобразного типа (рис. 5.9, а). Магнит 1 выполнен литым, крепится на валу с помощью втулки 2, например, из сплава алюминия. Намагничивания магнита осуществляется в радиальном направлении на многополюсной установке намагничивающей. Поскольку механическая прочность магнитов небольшая, то при высоких линейных скоростях магнит помещают в оболочку (бандаж) из немагнитного материала.

Разновидностью ротора с цилиндрическим магнитом является сборный ротор из отдельных сегментов 1 из немагнитной стальной оболочкой 3 (рис. 5.9, б). Намагниченные радиально сегментные магниты 1 заключены на втулку 2 с магнитомьякиои стали и любым способом, например, с помощью клея, закреплены. Генераторы с ротором такой конструкции при стабилизации магнита в свободном состоянии имеют форму кривой ЭДС, близкую к синусоидальной. Преимуществом роторов с цилиндрическим магнитом является простота и технологичность конструкции. Недостатком - низкое использование объема магнита вследствие небольшой длины средней силовой линии полюса h и. С увеличением числа полюсов значение h и уменьшается и использования объема магнита ухудшается.

Рисунок 5.9 - Роторы с цилиндрическим магнитом: а - монолитный, б - сборный

Роторы с звездообразным магнитом

В СГПМ мощностью до 5 кВА широкое распространение получили роторы звездообразного типа с явно выраженная полюсами без полюсных башмаков (рис. 5.10, а). В такой конструкции магнит-звездочку чаще крепят на валу с помощью заливки немагнитным сплавом 2. Магнит может также видпиватися непосредственно на валу. Для снижения размагничивающей действия поля реакции якоря при ударном токе короткого замыкания на роторе в ряде случаев предполагается демпферная система 3. Последняя осуществляется, как правило, путем заливки ротора алюминием. При больших частотах вращения на магнит напрессовывается немагнитный бандаж.

Однако, при перегрузках генератора поперечная реакция якоря может вызвать несимметричное перемагничивания краев полюсов. Подобное перемагничивания искажает форму поля в рабочем промежутке и форму кривой ЭДС.

Одним из способов уменьшения действия поля якоря на поле магнита применение полюсных башмаков с Магнитомягкие стали. Изменяя ширину полюсных башмаков (регулируя поток рассеяния полюсов), можно добиться оптимального использования магнита. Кроме того, изменяя конфигурацию полюсных башмаков, можно получить необходимую форму поля в рабочем промежутке генератора.

На рис. 5.10, б приведена конструкция сборного ротора звездообразного типа с призматическими постоянными магнитами с полюсными башмаками. Радиально намагниченные магниты 1 установлены на втулке 2 с Магнитомягкие материала. На полюсе магнитов наложенные полюсные башмаки 3 с магнитной стали. Для обеспечения механической прочности ба

Рисунок 5.10 - Роторы звездообразного типа: а - без полюсных башмаков; б - сборный с полюсными башмаками

шмакы приварены к немагнитных вставок 4, образующей бандаж. Промежутки между магнитами могут заполняться алюминиевым сплавом или компаундом.

К недостаткам роторов звездообразного типа с полюсными башмаками следует отнести усложнение конструкции и уменьшение заполнения магнитами объема ротора.

Роторы с когтеобразные полюсами.

В генераторах с большим числом полюсов широко используется конструкция ротора с когтеобразные полюсами. Ногтеобразный ротор (рис. 5.11) содержит цилиндрический магнит 1, намагниченный в аксиальном направлении, размещенный на немагнитных втулке 2. К торцам магнита примыкают фланцы 3 и 4 с Магнитомягкие стали, имеют когтеобразные выступления, которые образуют полюса. Все выступления левого фланца является северными полюсами, а выступления правого фланца - южными. Выступления фланцев чередуются по окружности ротора, образуя многополюсную систему возбуждения. Мощность генератора можно значительно повысить, если применить модульный принцип, расположив на валу несколько магнитов с когтеобразные полюсами.

Недостатками роторов когтеобразные типа являются: относительная сложность конструкции, трудность намагничивания магнита в собранном роторе, большие потоки рассеяния, возможен отгиб концов выступлений при высоких частотах вращения, имела мера заполнения магнитом объема ротора.

Существуют конструкции роторов с различными комбинациями ПМ: с последовательным и параллельным включением МРС магнитов, с регулированием напряжения за счет осевого перемещения ротора относительно статора, системы совместного регулирования возбуждения СГПМ от ПМ и параллельно работающей электромагнитной обмоткой и др. Для безредукторных витроелектриних установок лучшим решением является применение СГПМ много-

Рисунок 5.11 - Ротор когтеобразные типа

полюсного исполнения. Есть опыт в Германии, Украине в других странах по разработке и применению тихоходных генераторов для безредукторных ВЭУ с частотой вращения 125-375 об / мин.

Из-за главного требования для безредукторной ВЭУ - иметь низкую частоту вращения генератора - габариты и масса СГПМ получаются завышенными по сравнению с высокооборотными генераторами с примерно одинаковой мощности. В корпусе 1 (рис. 5.12) расположен обычный статор 2 с обмоткой 3. Ротор (индуктор) 4 с наклеенными на внешней поверхности пластинками 5 из неодим-железо-бора установлен на валу 6 с подшипниками 7. Корпус 1 закреплен на основе 8, эт "связано с опорой ВЭУ, а ротор 4 соединен с валом ветротурбин (на рис. 5.12 не показаны).

При низких скоростях ветра для ВЭУ необходимо использовать генераторы с низкими скоростями вращения. В этом случае система часто не имеет редуктора и ось непосредственно соединена с осью электрического генератора. При этом возникает проблема получения достаточно высокой выходного напряжения и электрической мощности. Один из способов ее решения - многополюсный электрогенератор с ротором достаточно большого диаметра. Ротор электрогенератора при этом может быть выполнен с использованием постоянных магнитов. Электрогенератор с ротором на постоянных магнитах не имеет коллектора и щеток, ко-

Рисунок 5.12 - Конструктивная схема СГПМ для безредукторной ВЭУ: 1- корпус; 2 - статор; 3 - обмотка; 4 - ротор; 5 - пластинки постоянных магнитов с Nd-Fe-B; 6 - вал; 7 - подшипники; 8 - основа

ляет существенно повысить его надежность и время работы без обслуживания и ремонта.

Электрогенератор с ротором на постоянных магнитах может быть построен по разным схемам, отличающиеся друг от друга общим расположением обмоток и магнитов. Магниты с полярностью, что чередуется, располагаются на роторе генератора. Обмотки с направлением намотки, что чередуется, располагаются на статоре генератора. Если ротор и статор представляют из себя соосные диски, то такой тип генератора называют аксиальным или дисковым (рис. 5.13).

Если ротор и статор представляют из себя коаксиальные соосные цилиндры, то такой тип генератора называют радиальным или цилиндрическим (рис. 5.14). В генераторе радиального типа ротор может быть внутренним или внешним по отношению к статора.

Рисунок 5.13 - Упрощенная схема электрогенератора с ротором на постоянных магнитах аксиального (дискового) типа

Рисунок 5.14 - Упрощенная схема электрогенератора с ротором на постоянных магнитах радиального (цилиндрического) типа

Важная особенность синхронных генераторов с ПМ по сравнению с обычными синхронными генераторами - сложность регулирования выходного напряжения и его стабилизации. Если в обычных синхронных машинах можно плавно регулировать рабочий поток и напряжение, меняя ток возбуждения, то в машинах с постоянными магнитами такая возможность отсутствует, поскольку поток Ф находится в пределах заданной линии возврата и меняется незначительно. Для регулирования и стабилизации напряжения синхронных генераторов с постоянными магнитами приходится использовать специальные методы.

Один из возможных путей стабилизации напряжения синхронных генераторов - введение во внешнюю электрическую цепь генератора емкостных элементов, способствующих появлению продольно-намагничивая реакции якоря. Внешние характеристики генератора при емкостном характере нагрузки слабо меняются и даже могут содержать нарастающие участка. Конденсаторы, обеспечивающие емкостной характер нагрузки, включаются последовательно в цепь нагрузки непосредственно (рис. 5.15, а) или через пидвишучий трансформатор, который позволяет уменьшить массу конденсаторов за счет увеличения их рабочего напряжения и уменьшения тока (рис. S.1S, б). Возможно также параллельное включение конденсатора в круг генератора (рис. 5.15, е).

Рисунок 5.15 - включение стабилизирующих конденсаторов в круг синхронного генератора с постоянными магнитами

Хорошую стабилизацию выходного напряжения генератора с ПМ можно обеспечить с помощью резонансного контура, содержащего емкость С и дроссель насыщения L. Контур включается параллельно нагрузке, как показано на рис. 5.16, а в однофазном изображении. За счет насыщения дросселя его индуктивность падает с ростом тока и зависимость напряжения на дросселе от тока дросселя имеет нелинейный характер (рис. 5.16, б). В то же время зависимость напряжения на емкости от тока - линейная. В точке пересечения кривых и , что соответствует номинальному напряжению генера-

Рисунок 5.16 - стабилизация напряжения, синхронного генератора с постоянными магнитами с помощью резонансного контура: а - схема подключения контура; б - вольт-амперные характеристики (б)

тора , в контуре наступает резонанс токов, то есть и реактивный ток в контур извне не поступает.

Если напряжение снизится, то, как видно из рис. 4.15, б, при имеем , то есть контур забирает от генератора емкостный ток. Продольно-намагничивая реакция якоря, возникающая при этом, способствует росту U . Если же , то и контур забирает от генератора индуктивный ток. Продольно-размагничивающей реакция якоря приводит к снижению U.

В некоторых случаях для стабилизации напряжения генераторов используются дроссели насыщения (ДН), что пидмагничуються постоянным током от системы регулирования напряжения. При снижении напряжения регулятор увеличивает пидмагничуючий ток в дросселе, его индуктивность снижается из-за насыщения сердечника, уменьшается действие продольно- размагничивающей реакции якоря, а также падение напряжения на ДН, что способствует восстановлению выходного напряжения генератора.

Регулирования и стабилизации напряжения генераторов с ПМ можно эффективно осуществлять с помощью полупроводникового преобразователя, в каждой фазе которого есть два встречно-параллельно включенных тиристора. Каждая полуволна кривой напряжения перед преобразователем соответствует прямом напряжении на одном из тиристоров. Если система управления подает сигналы на включение тиристоров с некоторым запаздыванием, что соответствует углу управления . С ростом напряжения за преобразователем уменьшается, при снижении напряжения на зажимах генератора угол уменьшается так, чтобы напряжение по генератором . С помощью подобного преобразователя можно не только стабилизировать, но и регулировать выходное напряжение в широких пределах, изменяя угол . Недостаток описанной схемы - ухудшение качества напряжения при увеличении за счет появления высших гармоник.

Описанные способы регулирования и стабилизации напряжения связанные с применением в отношении тяжелых и громоздких внешних по отношению к генератору дополнительных устройств. Можно обеспечить достижение поставленной цели путем использования в генераторе дополнительной пидмагничуваючои обмотки (ПО) постоянного тока, меняет мере насыщения стальных магнито проводов и меняет, таким образом, внешнюю магнитную проводимость по отношению к магниту.

Целью данной работы является выяснение энергетических особенностей сверхединичных синхронных генераторов на постоянных магнитах, и, в частности, влияние тока нагрузки, создающего размагничивающее поле (реакцию якоря), на нагрузочную характеристику таких генераторов. Испытанию подвергались два дисковых синхронных генератора различной мощности и конструкции. Первый генератор представлен малым синхронным дисковым генератором с одним магнитным диском диаметром 6 дюймов, с шестью парами полюсов, и обмоточным диском с двенадцатью обмотками. Этот генератор изображен на испытательном стенде (Фото №1), и его полные испытания описаны в моей статье под названием: ,Экспериментальные исследования энергетической эффективности получения электрической энергии из магнитного поля постоянных магнитов». Второй генератор представлен большим дисковым генератором с двумя магнитными дисками диаметром 14 дюймов, с пятью парами полюсов, и обмоточным диском с десятью обмотками. Этот генератор еще не был комплексно испытан, и изображен на фото №3, самостоятельной электрической машиной, рядом с испытательным стендом маленького генератора. Вращение этого генератора производилось двигателем постоянного тока, установленным на его корпусе.
Выходные переменные напряжения генераторов выпрямлялись, сглаживались конденсаторами большой емкости, и измерение токов и напряжений в обеих генераторах производилось на постоянном токе цифровыми мультиметрами типа DT9205A.Для малого генератора измерения производились на стандартной частоте переменного тока в 60Гц, что для малого генератора соответствовало 600 об/мин. Для малого генератора измерения также производились и на кратной частоте в 120 Гц, что соответствовало 1200 об/мин. Нагрузка в обеих генераторах была чисто активной. В маленьком генераторе с одним магнитным диском магнитная цепь была разомкнута, а воздушный зазор между ротором и статором составлял около 1 мм. В большом генераторе, с двумя магнитными дисками, магнитная цепь была замкнута, а обмотки помещались в воздушном зазоре 12 мм.
При описании физических процессов в обеих генераторах, аксиомой является то, что у постоянных магнитов магнитное поле неизменно, и его нельзя ни уменьшить, ни увеличить. Это важно учитывать при анализе характера внешних характеристик этих генераторов. Поэтому в качестве переменной будем рассматривать только изменяющееся размагничивающее поле нагрузочных обмоток генераторов. Внешняя характеристика маленького генератора, при частоте 60 Гц, приведена на рис.1, на котором также изображена кривая выходной мощности генератора Рген, и кривая КПЭ. Характер кривой внешней характеристики генератора может быть объяснен, исходя из следующих соображений — если величина магнитного поля на поверхности полюсов магнитов и неизменна, то по мере удаления от этой поверхности она уменьшается, и, находясь вне тела магнита, может изменяться. При малых токах нагрузки поле нагрузочных обмоток генератора взаимодействует с ослабленной, рассеяной частью поля магнитов и сильно уменьшает его. В результате их общее поле сильно уменьшается, и выходное напряжение резко падает по параболе, поскольку мощность размагничивающего тока пропорциональка его квадрату. Это подтверждает и картина магнитного поля магнита и обмотки, полученная с помощью железных опилок. На фото №1 видна картина только самого магнита, и четко видно, что силовые линии поля сосредоточены у полюсов, в виде сгустков опилок. Ближе к центру магнита, где поле вообще нулевое, поле сильно ослабевает, так, что не может даже сдвинуть опилки. Вот это ослабленное поле и обнуляет реакция якоря обмотки, при малом токе в 0,1А, как это видно на фото №2. С дальнейшим увеличением тока нагрузки уменьшаются и более сильные поля магнита, находящиеся ближе к их полюсам, но уменьшать дальше, все возрастающее поле магнита, обмотка не может, и кривая внешней характеристики генератора постепенно выпрямляется, и превращается в прямую зависимости выходного напряжения генератора от тока нагрузки. Причем на этой линейной части нагрузочной характеристики, напряжения под нагрузкой уменьшаются меньше чем на нелинейной, и внешняя характеристика становится жеще. Она приближается к характеристике обычного синхронного генератора, но с меньшим начальным напряжением. В промышленных синхронных генераторах допускается до 30% падения напряжения под номинальной нагрузкой. Посмотрим же какие проценты падения напряжения у маленького генератора при 600 и 1200 об/мин. При 600 оборотах, напряжение его холостого хода составляло 26 Вольт, а под током нагрузки в 4 Ампера, упало до 9 Вольт, тоесть уменьшилось на 96,4% — это очень высокое падение напряжения, более чем в три раза превашающее норму. При 1200 оборотах, напряжение холостого хода стало уже 53,5 Вольт, а под тем-же током нагрузки в 4 Ампера, упало до 28 Вольт, тоесть уменьшилось уже на 47,2% — это уже ближе к допустимым 30%. Однако рассмотрим численные изменения жесткости внешней характеристики этого генератора в широком диапазоне нагрузок. Жесткость нагрузочной характеристики генератора определяется скоростью падения выходного напряжения под нагрузкой, поэтому просчитаем её, начиная от напряжения холостого хода генератора. Резкий и нелинейный спад этого напряжения наблюдается примерно до тока в один Ампер, и наиболее ярко выражен до тока в 0,5 Ампера. Так, при токе нагрузки в 0,1 Ампера, напряжение равно 23 Вольта и падает, по сравнению с напряжением холостого хода в 25 Вольт, на 2 Вольта, тоесть скорость падения напряжения составляет 20 В/A. При токе нагрузки в 1.0 Ампера напряжение уже равно 18 Вольт, и падает на 7 Вольт, по сравнению с напряжением холостого хода, тоесть скорость падения напряжения составляет уже 7 В/А, тоесть она уменьшилась в 2,8 раза. Такое повышение жесткости внешней характеристики продолжается и при дальнейшем увеличении нагрузки генератора. Так, при токе нагрузки в 1.7 Ампера, напряжение падает с 18 Вольт до 15,5 Вольт, тоесть скорость падения напряжения составляет уже 3,57 В/А, а при токе нагрузки в 4 Ампера, напряжение с 15,5 Вольт падает до 9 Вольт, тоесть скорость падения напряжения уменьшается до 2,8 В/А. Такой процесс сопровождается и постоянным увеличением выходной мощности генератора (Рис. 1), при одновременном повышением жесткости его внешней характеристики. Повышение выходной мощности, при этих 600 об/мин, обеспечивает при этом и достаточно высокий КПЭ генератора в 3,8 единиц. Аналогичные процессы происходят и при двойной синхронной скорости генератора (Рис. 2), тоже сильное квадратурное снижение выходного напряжения при малых токах нагрузки, с дальнейшим повышением жесткости его внешней характеристики с увеличением нагрузки, отличия только в численных значениях. Возьмем только два крайних случая нагрузки генератора — минимального и максимального токов. Так при минимальном токе нагрузки в 0,08 А, напряжение равно 49,4 В, и падает, по сравнению с напряжением в 53,5 В на 4,1 В. Тоесть скорость падения напряжения составляет 51,25 В/А, и более чем в два раза превышает эту скорость при 600 об/мин. При максимальном токе нагрузки в 3,83 А, напряжение уже равно 28,4 В, и падает, по сравнению с 42 В при токе в 1,0 А, на 13,6 В. Тоесть скорость падения напряжения составила 4,8 В/А, и в 1,7 раза превышает эту скорость при 600 об/мин. Из этого можно сделать вывод, что увеличение скорости вращения генератора значительно снижает жесткость его внешней характеристики на её начальном участке, но не значительно снижает её на линейном участке его нагрузочной характеристики. Характерно, что при этом, при полной нагрузке генератора в 4 Ампера, процентное падение напряжения оказывается при этом меньше чем при 600 оборотах. Это объясняется тем, что выходная мощность генератора пропорциональна квадрату генерируемого напряжения, тоесть оборотам ротора, а мощность размагничивающего тока пропорциональна квадрату тока нагрузки. Поэтому при номинальной, полной нагрузке генератора размагничивающая мощность, по отношению к выходной, оказывается меньше, и прцентное падение напряжения снижается. Главной положительной особенностью более высокой скорости вращения маленького генератора является существенное повышение его КПЭ. При 1200 об/мин КПЭ генератора увеличился, с 3,8 единиц при 600 об/мин, до 5,08 единиц.
Большой генератор концептуально имеет иную конструкцию, основанную на применении второго закона Кирхгофа в магнитных цепях. Этот закон гласит, что если в магнитной цепи имеются два, или несколько источников МДС (в виде постоянных магнитов), то в магнитном контуре эти МДС алгебраически суммируются. Поэтому, если мы возьмем два одинаковых магнита, и одни их разноименные полюса соеденим магнитопроводом, то в воздушном зазоре других двух разноименных полюсов возникает удвоенная МДС. Этот принцип и положен в конструкцию большого генератора. Такие же плоские по форме обмотки, как и в магеньком генераторе, и помещены в этот образовавшийся воздушный зазор с двойной МДС. Как повлияло это на внешнюю характеристику генератора показали его испытания. Испытания этого генератора производились на стандартной частоте в 50Гц, что, так-же, как и в маленьком генераторе, соответствует 600 об/мин. Была сделана попытка сравнить внешние характеристики этих генераторов при одинаковых напряжениях их холостого хода. Для этого скорость вращения большого генератора была понижена до 108 об/мин, и его выходное напряжение понизилось до 50 Вольт, напряжения близкого к напряжению холостого хода маленького генератора при скорости вращения 1200 об/мин. Полученная таким образом внешняя характеристика большого генератора приведена на том-же рисунке №2, где изображена и внешняя характеристика маленького генератора. Сравнение этих характеристик показывает, что при таком, очень низком выходном напряжении для большого генератора, его внешняя характеристика оказывается очень мягкой, даже по сравнения не со столь жесткой внешней характеристикой маленького генератора. Поскольку оба сверединичных генератора способны к самовращению, то предстояло выяснить, что требуется для этого в их энергетических характеристиках. Поэтому проводилось и экспериментальное исследовани мощности, потребляемой приводным электродвигателем, без потребления свободной энергии от большого генератора, тоесть измерение потерь холостого хода генератора. Эти исследования проводились для двух разных передаточных отношений понижающего редуктора между валом электродвигателя и валом генератора, с целью их влияния на потребляемую мощность холостого хода генератора. Все эти измерения проводились в диапазоне от 100 до 1000 об/мин. Измерялось напряжение питания приводного электродвигателя, потребляемый им ток, и рассчитывалась мощность холостого хода генератора, при передаточных отношениях редуктора равных 3,33 и 4,0. На рис.№3 приведены графики изменений этих величин. Напряжение питания приводного электродвигателя линейно возрастало с увеличением оборотов при обеих редукторных отношениях, а потребляемый ток имел небольшую нелинейность, вазванную квадратичной зависимостью электрической составляющей мощности от тока. Механическая же составляющая потребляемой мощности, как известно, линейно зависит от скорости вращения. Замечено, что повышение передаточного отношения редуктора снижает потребляемый ток во всем диапазоне скоростей, и особенно при больших скоростях. И это естественно сказывается и на потребляемой мощности — эта мощность снижается пропорционально увеличению передаточного отношения редуктора, и в данном случае примерно на 20%. Внешняя характеристика большого генератора снималась только при передаточном отношении равном четырем, но при двух значениях оборотов — 600 (частота 50 Гц) и 720 (частота 60 Гц). Эти нагрузочные характеристики приведены на рис.4. Это характеристики, в отличие от характеристик маленького генератора, имеют линейный характер, с очень малым падением напряжения под нагрузкой. Так при 600 об/мин напряжение холостого хода в 188 В под током нагрузки 0,63 А упало на 1,0 В. При 720 об/мин напряжение холостого хода в 226 В под током нагрузки 0,76 А упало тоже на 1,0 В. При дальнейшем увеличении нагрузки генератора эта закономерность сохранялась, и можно считать что скорость падения напряжения составляет примерно 1 В на Ампер. Если посчитать процентное падение напряжения, то для 600 оборотов оно составляло 0,5%, а для 720 оборотов 0,4%. Это падение напряжения обусловлено только падением напряжения на активном сопротивлении цепи обмотки генератора — самой обмотки, выпрямителя и соеденительных проводов, а оно равно примерно 1,5 Ом. Размагничивающее действие генераторной обмотки под нагрузкой при этом не проявлялось, или проявлялось очень слабо при больших токах нагрузки. Это объясняется тем, что удвоенное магнитное поле, в столь узком воздушном зазоре, где и находится обмотка генератора, реакция якоря не может преодолеть, и непряжение генерируется в.этом удвоенном магнитном поле магнитов. Главной отличительной особенностью внешних характеристик большого генератора является то, что и при малых токах нагрузки они линейны, нет резких падений напряжения, как в маленьком генераторе, и это объясняется тем, что существующая реакция якоря не может проявить себя, не может преодолеть поле постоянных магнитов. Поэтому можно сделать следующие рекомендации для разработчиков генераторов СЕ на постоянных магнитах:

1. Ни в каком случае не применяйте в них разомкнутых магнитных цепей, это приводит к сильному рассеиванию и недоиспользованию магнитного поля.
2. Поле рассеивания легко преодолевается реакцией якоря, что приводит к резкому смягчению внешней характеристики генератора, и невозможности снять с генератора расчетную мощность.
3. Мощность генератора вы можете удвоить, при одновременном увеличении жесткости внешней характеристики, применив в его магнитной цепи два магнита, и создав поле с удвоенной МДС.
4. В этом поле с удвоенной МДС нельзя помещать катушки с ферромагнитными сердечниками, ибо это приводит к магнитному соединению двух магнитов, и исчезновению эффекта удвоения МДС.
5. В электроприводе генератора применяйте такое передаточное отношение редуктора, которое наиболее эффективно позволит вам уменьшить потери на входе генератор на холостом ходу.
6. Рекомендую дисковую конструкцию генератора, это наиболее простая конструкция, доступная в изготовлении в домашних условиях.
7. Дисковая конструкция позволяет использовать корпус и вал с подшибниками от обычного электродвигателя.

И наконец пожелаю вам упорства и терпения в создании
реально действующего генератора.

Из истории вопроса. На сегодняшний день в моей работе возник вопрос об участии в проекте по внедрению собственной малой генерации на предприятии. Ранее, был опыт работы с синхронными электродвигателями, с генераторами опыт минимальный.

Рассматривая предложения различных производителей в одном из таких открыл для себя способ возбуждения синхронного генератора при помощи подвозбудителя на основе генератора на постоянных магнитах (PMG). Обмолвлюсь, что система возбуждения генератора планируется бесщеточная. Пример синхронных электродвигателей я описывал ранее.

И так, из описания генератора (PMG) на постоянных магнитах в качестве подвозбудителя обмотки возбуждения возбудителя генератора следует:

1. Теплообменник типа «воздух-вода». 2. Генератор с постоянным магнитом. 3. Устройство возбуждения. 4. Выпрямитель. 5. Радиальный вентилятор. 6. Воздушный канал.

В данном случае система возбуждения состоит из вспомогательных обмоток или генератора с постоянным магнитом, автоматического регулятора напряжения (AVR), CT и VT для определения тока и напряжения, встроенного устройства возбуждения и вращающегося выпрямителя. В стандартном случае турбогенераторы оборудованы цифровым AVR, обеспечивающим регулирование PF (коэффициента мощности) и выполнение различных функций мониторинга и защиты (ограничение возбуждения, обнаружение перегрузки, возможность резервирования и т.д.). Постоянный ток возбуждения, идущий от AVR, усиливается вращающимся устройством возбуждения и затем выпрямляется вращающимся выпрямителем. Вращающийся выпрямитель состоит из диодов и стабилизаторов напряжения.

Схематичные изображение системы возбуждения турбогенератора с использованием PMG:

Решение с применением генератора на постоянных магнитах (PMG) на главном валу с ротором генератора и бесщеточным возбудителем:

Собственно, на данный момент говорить о преимуществах данного способа регулирования возбуждения для меня не представляется возможным. Думаю, со временем набора информации и опыта поделюсь с вами своим опытом применения PMG.

Синхронные машины с постоянными магнита­ми (магнитоэлектрические) не имеют обмотки воз­буждения на роторе, а возбуждающий магнитный поток у них создается постоянными магнитами, рас­положенными на роторе. Статор этих машин обыч­ной конструкции с двух- или трехфазной обмоткой.

Применяют эти машины чаще всего в качестве двигателей небольшой мощности. Синхронные ге­нераторы с постоянными магнитами применяют ре­же, главным образом в качестве автономно рабо­тающих генераторов повышенной частоты, малой и средней мощности.

Синхронные магнитоэлектрические двигате­ли. Эти двигатели получили распространение в двух конструктивных исполнениях: с радиальным и акси­альным расположением постоянных магнитов.

При радиальном расположении по­стоянных магнитов пакет ротора с пусковой клет­кой, выполненный в виде полого цилиндра, закреп­ляют на наружной поверхности явно выраженных полюсов постоянного магнита 3. В цилиндре делают межполюсные прорези, предотвращающие замыка­ние потока постоянного магнита в этом цилиндре (рис. 23.1, ).

При аксиальном расположении маг­нитов конструкция ротора аналогична конструкции ротора асинхронного короткозамкнутого двигателя. К торцам этого ротора прижаты кольцевые постоян­ные магниты (рис. 23.1, ).

Конструкции с аксиальным расположением маг­нита применяют в двигателях малого диаметра мощностью до 100 Вт; конструкции с радиальным расположением магнитов применяют в двигателях большего диаметра мощностью до 500 Вт и более.

Физические процессы, протекающие при асин­хронном пуске этих двигателей, имеют некоторую осо­бенность, обусловленную тем, что магнитоэлектриче­ские двигатели пускают в возбужденном состоянии. Поле постоянного магнита в процессе разгона ротора наводит в обмотке статора ЭДС
, частота которой увеличивается пропор­ционально частоте вращения ротора. Эта ЭДС наводит в обмотке статора ток, взаимодействующий с полем постоянных магнитов и создающий тормозной момент
, направленный встречно вращению ротора.

Рис. 23.1. Магнитоэлектрические синхронные двигатели с радиальным (а) и

аксиальным (б) расположением постоянных магнитов:

1 - статор, 2 - короткозамкнутый ротор, 3 - постоянный магнит

Таким образом, при разгоне двигателя с постоянными магни­тами на его ротор действуют два асинхронных момента (рис. 23.2): вращающий
(от тока , поступающего в обмотку статора из сети) и тормозной
(от тока , наведенного в обмотке статораполем постоянного магнита).

Однако зависимость этих моментов от частоты вращения ро­тора (скольжения) различна: максимум вращающего момента
соответствует значительной частоте (небольшому скольжению), а максимум тормозного момента М Т - малой частоте вращения (большому скольжению). Разгон ротора происходит под действи­ем результирующего момента
, который имеет зна­чительный «провал» в зоне малых частот вращения. Из приведен­ных на рисунке кривых видно, что влияние момента
на пусковые свойства двигателя, в частности на момент входа в син­хронизм М вх , значительно.

Для обеспечения надежного пуска двигателя необходимо, чтобы минимальный результирующий момент в асинхронном ре­жиме
и момент входа в синхронизмМ вх , были больше момента нагрузки. Форма кривой асинхронного момента магнитоэлектри­ческого

Рис.23.2. Графики асинхронных моментов

магнитоэлектрического синхронного двигателя

двигателя в значительной степени зависит от активного сопротивления пусковой клетки и от степени возбужденности дви­гателя, характеризуемой величиной
, гдеЕ 0 - ЭДС фазы статора, наведенная в режиме холостого хода при вра­щении ротора с синхронной частотой. С увеличением «провал»в кривой момента
увеличивается.

Электромагнитные процессы в магнитоэлектрических син­хронных двигателях в принципе аналогичны процессам в син­хронных двигателях с электромагнитным возбуждением. Однако необходимо иметь в виду, что постоянные магниты в магнито­электрических машинах подвержены размагничиванию действием магнитного потока реакции якоря. Пусковая обмотка несколько ослабляет это размагничивание, так как оказывает на постоянные магниты экранирующее действие.

Положительные свойства магнитоэлектрических синхронных двигателей - повышенная устойчивость работы в синхронном режиме и равномерность частоты вращения, а также способность синфазного вращения нескольких двигателей, включенных в одну сеть. Эти двигатели имеют сравнительно высокие энергетические показатели (КПД и
,).

Недостатки магнитоэлектрических синхронных двигателей - повышенная стоимость по сравнению с синхронными двигателями других типов, обусловленная высокой стоимостью и сложностью обработки постоянных магнитов, выполняемых из сплавов, обла­дающих большой коэрцитивной силой (ални, алнико, магнико и др.). Эти двигатели обычно изго­товляют на небольшие мощности и применяют в приборостроении и в устройствах автоматики для привода механизмов, требующих по­стоянства частоты вращения.

Синхронные магнитоэлек­ трические генераторы . Ротор та­кого генератора выполняют при малой мощности в виде «звездоч­ки» (рис. 23.3, а ), при средней мощности - с когтеобразными полюсами и цилиндрическим постоянным магнитом (рис. 23.3, б). Ротор с когтеобразными полюсами дает возможность получить генератор с рассеянием полюсов, ограничивающим ударный ток при внезапном коротком замыкании генератора. Этот ток представляет большую опасность для постоянного магнита ввиду сильного размагничивающего действия.

Помимо недостатков, отмеченных при рассмотрении магнитоэлектрических синхронных двигателей, генераторы с постоянны­ми магнитами имеют еще один недостаток, обусловленный отсутствием обмотки возбуждения, а поэтому регулировка напряжения в магнитоэлектрических генераторах практически невозможна. Это затрудняет стабилизацию напряжения генератора при измене­ниях нагрузки.

Рис.23.3. Роторы магнитоэлектрических синхронных генераторов:

1 – вал; 2 – постоянный магнит; 3 – полюс; 4 – немагнитная втулка

В синхронных машинах этого типа постоянно направленное поле возбуждения образуется с помощью постоянных магнитов. Синхронные машины с постоянными магнитами не нуждаются в возбудителе и благодаря отсутствию потерь на возбуждение и в скользящем контакте обладают высоким КПД, их надежность существенно выше, чем у обычных синхронных машин, в которых вращающаяся обмотка возбуждения и щеточное устройство достаточно часто повреждаются; кроме того, они практически не нуждаются в обслуживании в течение всего срока службы.
Постоянные магниты могут заменять обмотку возбуждения как в многофазных синхронных машинах обычного исполнения, так и во всех специальных исполнениях, которые были описаны выше (однофазных синхронных машинах, синхронных машинах с клюво- образными полюсами и в индукторных машинах).
Синхронные машины с постоянными магнитами отличаются от своих аналогов с электромагнитным возбуждением конструкцией индукторных магнитных систем. Аналогом ротора обычной неявнопо- люсной синхронной машины является цилиндрический кольцеобразный магнит, намагничиваемый в радиальном направлении (рис., 6).

Индукторные магнитные системы с цилиндрическим и звездообразным магнитами;
а - звездообразный магнит без полюсных башмаков; б - четырехполюсный цилиндрический магнит


Рис. 2. Ротор с когтеобразными полюсами, возбуждаемый постоянным магнитом:
1 - кольцевой постоянный магнит; 2 - диск с системой южных полюсов; 3 - диск с системой северных полюсов

Явнополюсному ротору обычной машины с электромагнитным возбуждением аналогичен ротор со звездообразным магнитом по рис. 1, а, в котором магнит 1 крепится на валу 3 заливкой из алюминиевого сплава 2.

В роторе с когтеобразиыми полюсами (рис. 2) кольцевой магнит, намагниченный в осевом направлении, заменяет кольцевую обмотку возбуждения. В разноименнополюсной индукторной машине по рис. электромагнитное возбуждение может быть заменено магнитным, как показано на рис. 3 (вместо трех малых зубцов в каждой из зон I-IV здесь имеется по одному зубцу в каждой из зон). Соответствующий аналог с магнитным возбуждением имеется и у одноименнополюсной машины. Постоянный магнит может быть в этом случае выполнен в виде намагниченного в осевом направлении кольца, которое вставлено между станиной и подшипниковым щитом.

Рис. 3. Индукторный разноименнополюсной генератор с магнитоэлектрическим возбуждением:
ОЯ - обмотка якоря; ПМ - постоянный магнит
Для описания электромагнитных процессов в синхронных машинах с постоянными магнитами вполне пригодна теория синхронных машин с электромагнитным возбуждением, основы которой изложены в предыдущих главах раздела. Однако для того, чтобы воспользоваться этой теорией и применить ее для расчета характеристик синхронной машины с постоянными магнитами в генераторном или двигательном режиме, нужно предварительно определить по кривой размагничивания постоянного магнита ЭДС холостого хода Е, или коэффициент возбужденности г = Ef / U и рассчитать индуктивные сопротивления Xad и X с учетом влияния магнитного сопротивления магнита, которое может быть настолько существенным, что Ха(1 < Xaq.
Машины с постоянными магнитами были изобретены еще на заре развития электромеханики. Однако широкое применение они получили в течение последних десятилетий в связи с разработкой новых материалов для постоянных магнитов с большой удельной магнитном энергией (например, типа магнико или сплавов на основе самария и кобальта). Синхронные машины с такими магнитами по своим массо- габаритным показателям и эксплуатационным характеристикам в определенном диапазоне мощностей и частот вращения вполне могут конкурировать с синхронными машинами, имеющими электромагнитное возбуждение.

Мощность быстроходных синхронных генераторов с постоянными магнитами для питания бортовой сети самолетов достигает десятков киловатт. Генераторы и двигатели с постоянными магнитами небольшой мощности применяются в самолетах, автомобилях, тракторах, где их высокая надежность имеет первостепенное значение. В качестве двигателей малой мощности они широко применяются и во многих других областях техники. По сравнению с реактивными двигателями они обладают более высокой стабильностью частоты вращения, лучшими энергетическими показателями, уступая им по стоимости и пусковым свойствам.
По способам пуска в ход синхронные двигатели малой мощности с постоянными магнитами делятся на самозапускающиеся двигатели и двигатели с асинхронным пуском.
Самозапускающиеся двигатели малой мощности с постоянными магнитами применяются для приведения в движение механизмов часов и различных реле, разнообразных программных устройств и т.п. Номинальная мощность этих двигателей не превышает нескольких ватт (обычно составляет доли ватта). Для облегчения пуска двигатели выполняют многополюсными (р > 8) и получают питание от однофазной сети промышленной частоты.
В нашей стране такие двигатели выпускаются в серии ДСМ, в которой для создания многополюсного поля применены клювообразное исполнение магнитопровода статора и однофазная якорная обмотка.
Запуск этих двигателей в ход осуществляется за счет синхронного момента от взаимодействия пульсирующего поля с постоянными магнитами ротора. Для того чтобы пуск произошел успешно и в нужную сторону, применяют специальные механические устройства, которые позволяют ротору вращаться только в одном направлении и отсоединяют его от вала во время синхронизации
Синхронные двигатели малой мощности с постоянными магнитами с асинхронным пуском выпускаются с радиальным расположением постоянного магнита и пусковой короткозамкнутой обмотки и с аксиальным расположением постоянного магнита и пусковой короткозамкнутой обмотки. По устройству статора эти двигатели ничем не отличаются от машин с электромагнитным возбуждением. Обмотка статора в обоих случаях выполняется двух- или трехфазной. Различаются они лишь по конструкции ротора.
В двигателе с радиальным расположением магнита и коротко- замкнутой обмоткой последняя размещается в пазах шихтованных полюсных наконечников постоянных магнитов Для получения приемлемых потоков рассеяния между наконечниками соседних полюсов имеются немагнитные промежутки. Иногда в целях увеличения механической прочности ротора наконечники объединяются с помощью насыщающихся перемычек в целый кольцевой сердечник.
В двигателе с аксиальным расположением магнита и коротко- замкнутой обмоткой часть активной длины занята постоянным магнитом, а на другой ее части рядом с магнитом размешается шихтованный магнитопровод с короткозамкнутой обмоткой, причем и постоянный магнит, и шихтованный магнитопровод укреплены на общем валу. В связи с тем что во время пуска двигатели с постоянными магнитами остаются возбужденными, их пуск протекает менее благоприятно, чем в обычных синхронных двигателях, возбуждение которых отключается. Объясняется это тем, что при пуске наряду с положительным асинхронным моментом от взаимодействия вращающегося поля с токами, индуктированными в короткозамкнутой обмотке, на ротор действует отрицательный асинхронный момент от взаимодействия постоянных магнитов с токами, индуктированными полем постоянных магнитов в обмотке статора.

mob_info