Анализ кала на паразитов методом обогащения. Специальные методы обогащения Метод обогащения по крупности

2 Грохочением называют процесс разделения кусковых и зернистых материалов на продукты различной крупности, называемые классами, с помощью просеивающих поверхностей с калиброванными отверстиями (колосниковые решетки, листовые и проволочные решета).

В результате грохочения исходный материал разделяется на надрешетный (верхний) продукт, зерна (куски) которого больше размера отверстий просеивающей поверхности, и подрешетный (нижний продукт), зерна (куски) которого меньше размера отверстий просеивающей поверхности.

Дробление и измельчение – процесс разрушения полезных ископаемых под действием внешних сил до заданной крупности, требуемого гранулометрического состава или необходимой степени раскрытия материалов. При дроблении и измельчении нельзя допускать переизмельчения материалов, так как это ухудшает процесс обогащения полезного ископаемого.

Классификация – процесс разделения смеси минеральных зерен на классы различной крупности по скоростям их осаждения в водной или воздушной средах. Классификация осуществляется в специальных аппаратах, называемых классификаторами, если разделение происходит в водной среде (гидроклассификация), и воздушными сепараторами, если разделение происходит в воздушной среде.

Гравитационными процессами обогащения называют процессы обогащения, в которых разделение минеральных частиц, отличающихся плотностью, размером или формой, обусловлено различием в характере и скорости их движения в среде под действием силы тяжести и сил сопротивления.

К гравитационным процессам относятся отсадка, обогащение в тяжелых средах, концентрация на столах, обогащение в шлюзах, желобах, струйных концентраторах, конусных, винтовых и противоточных сепараторах, пневматическое обогащение.

Флотационные методы обогащения – процесс разделения тонкоизмельченных полезных ископаемых, осуществляемый в водной среде и основанный на различии их способности, естественной или искусственно создаваемой, смачиваться водой, что определяет избирательное прилипание частиц минералов к поверхности раздела двух фаз. Большую роль при флотации играют флотационные реагенты – вещества, позволяющие процессу идти без особых осложнений и ускоряющие сам процесс флотации, а так же выход концентрата.

Магнитные методы обогащения полезных ископаемых основаны на различии магнитных свойств разделяемых минералов. Разделение по магнитным свойствам осуществляется в магнитных полях.

При магнитном обогащении используются только неоднородные магнитные поля. Такие поля создаются соответствующей формой и расположением полюсов магнитной системы сепаратора. Таким образом магнитное обогащение осуществляется в специальных магнитных сепараторах.

Электрическим обогащением называется процесс разделения минералов в электрическом поле, основанный на различии их электрических свойств. Этими свойствами являются электропроводность, диэлектрическая проницаемость, трибоэлектрический эффект.

3. Ручная рудоразработка и породовыборка как способ обогащения основаны на использовании различия во внешних признаках разделяемых минералов – цвете, блеске, форме зерен. Из общей массы полезного ископаемого отбирают обычно тот материал, которого содержится меньше. В том случае, когда из полезного ископаемого отбирается ценный компонент, операция называется рудоразработкой, когда пустая порода – породовыработкой.

Декрипитация основана на способности отдельных минералов растрескиваться (разрушаться) при их нагревании и последующем быстром охлаждении.

Обогащение по трению, форме и упругости основано на использовании различий в скоростях движения разделяемых частиц по плоскости под действием сил тяжести. Основным параметром движения частиц по наклонной плоскости, является коэффициент трения, зависящий в основном от характера поверхности самих частиц и их формы.

Адиометрическая сортировка , основанная на различии радиоактивных свойств минералов или силе их излучения

Радиометрические методы обогащения основаны на различной способности минералов, испускать, отражать, или поглощать различные виды излучения.

К химическим методам обогащения относят процессы, связанные с химическими превращениями минералов (или только их поверхности) в другие химические соединения, в результате чего изменяются их свойства, или с переводом минералов из одного состояния в другое.

Химическое и бактериальное обогащение, основанное на спо­собности минералов, например сульфидов, окисляться и раство­ряться в сильно кислых растворах. При этом металлы переходят в раствор, из которого извлекаются различными химико-металлур­гическими методами. Присутствие в растворах некоторых типов бактерий, например тионовых, значительно интенсифицирует процесс растворения минералов.

В технологических схемах обогащения сложных комплексных руд часто используют одновременно два или три различных ме­тода обогащения, например: гравитационный и флотационный, гравитационный и магнитный и т. п. Применяются также комби­нированные методы обогащения в сочетании с гидрометаллурги­ческими.

Для успешного применения того или иного метода обогащения необходимо наличие у минералов достаточного различия тех свойств, которые используются в данном методе.

4. Процесс обогащения характеризуется следующими техноло­гическими показателями: содержанием металла в руде или продукте обогащения; выходом продукта; степенью сокращения и извлечением металла.

Содержание металла в руде или продукте обогащения - это отношение массы этого металла в руде или продукте обогащения к массе сухой руды или продукта, выраженное в процентах. Содержание металла принято обозначать греческими буквами α (в исходной руде), β (в концентрате) и θ (в хвостах). Содержание драгоценных металлов выражается обычно в единицах массы (г/т).

Выход продукта - отношение массы продукта, полученного -при обогащении, к массе переработанной исходной руды, выражен­ное в долях единицы или процентах. Выход концентрата (γ) показы­вает, какую долю от общего количества руды составляет концентрат.

Степень сокращения - величина, обозначающая во сколько раз выход полученного концентрата меньше количества перерабо­танной руды. Степень сокращения (К) выражает количество тонн; руды, которое нужно переработать, чтобы получить 1 т концентрата, и рассчитывается по формуле:

К= 100/ γ

Для руд цветных и редких металлов характерен малый выход концентрата и, следовательно, высокая степень сокращения. Выход концентрата определяется прямым взвешиванием или по данным химического анализа по формуле:

γ =(α - θ/β - θ)100,%.

Степень обогащения, или степень концентрации показывает, во сколько раз увеличилось содержание металла в кон­центрате по сравнению с содержанием металла в руде. При обогаще­нии бедных руд этот показатель может составлять 1000... 10000.

Извлечение металлаε - это отношение массы металла в кон­центрате к массе металла в исходной руде, выраженное в процентах

ε=γβ/α

Уравнение баланса металла

εα=γβ

связывает основные технологические показатели процесса и позволяет рассчитать степень извлечения металла в концентрат, которая, в свою очередь, показывает полноту перехода металла из руды в концентрат.

Выход продуктов обогащения можно определить по данным химических анализов продуктов. Если обозначить:- выход концентрата; - содержание металла в руде; - содержание металла в концентрате; - содержание металла в хвостах, а - извлечение металла в концентрат, то можно составить баланс металла по руде и продуктам обогащения, т. е. коли­чество металла в руде равно сумме его количеств в концентрате и хвостах

Здесь за 100 принят выход исходной руды в процентах. Отсюда выход концентрата

Извлечение металла в концентрат можно подсчитать по формуле

Если выход концентрата неизвестен, то

Например, при обогащении свинцовой руды, содержащей 2,5% свинца, получен концентрат с содержанием 55% свинца и хвосты, содержащие 0,25% свинца. Подставляя результаты химических анализов в приведенные выше формулы, получим:

выход концентрата

извлечение в концентрат

выход хвостов

степень обогащения:

Качественно-количественные показатели обогащения харак­теризуют техническое совершенство технологического процесса на фабрике.

Качество конечных продуктов обогащения должно соответство­вать требованиям, предъявляемым потребителями к их химическому составу. Требования к качеству концентратов называются кондициями и регламентируются ГОСТ, техническими условиями (ТУ) или временными нормами и разрабатываются с учетом технологии и экономики I переработки данного сырья и его свойств. Кондициями устанавливается минимально или максимально допустимое содержание различных со­ставных компонентов полезного ископаемого в конечных продуктах обогащения. Если качество продуктов соответствует кондициям, то эти продукты называются кондиционными.

Выводы:

Обогатительная фабрика является промежуточным звеном между рудником (шахтой) и металлургическим заводом. Руда различной крупности, поступающая с рудника, при переработке на обогатительной фабрике проходит различные процессы, которые по своему назначению можно разделить на подготовитель­ные, собственно обогатительные и вспомогательные.

Подготовительные процессы имеют целью под­готовить руду к обогащению. Подготовка включает прежде всего операции уменьшения размеров кусков руды - дробление и измельчение и связанную с ними классификацию руды на гро­хотах, в классификаторах и гидроциклонах. Конечная крупность измельчения определяется крупностью вкрапленности минералов, так как при измельчении не­обходимо максимально рас­крыть зерна ценных мине­ралов.

К собственно обо­гатительным про­цессам относятся про­цессы разделения руды и других продуктов по физи­ческим и физико-химическим свойствам минералов, входя­щих в их состав. К этим процессам относятся гравита­ционное обогащение, флота­ция, магнитная и электри­ческая сепарация и др.

Большинство процессов обогащения проводится в во­де и получаемые продукты содержат большое количе­ство ее. Поэтому возникает необходимость во вспомогательных процессах. К ним относится обезвоживание продуктов обогащения, включающее сгущение, фильтрование и сушку.

Кроме того, существуют так называемые специальные методы обогащения, к которым относятся:

рудоразработка, основанная на различии цвета и блеска отдель­ных минералов, их прозрачности или свечения;

адиометрическая сортировка, основанная на различии радиоактивных свойств минералов или силе их излучения;

обогащение по трению, основанное на различии коэффициен­тов трения минералов при движении их по плоскости;

химическое и бактериальное обогащение, основанное на спо­собности минералов, например, сульфидов, окисляться и раство­ряться в сильно кислых растворах.

Процесс обогащения характеризуется техноло­гическими показателями: содержанием металла в руде или продукте обогащения; выходом продукта; степенью сокращения и извлечением металла, что определяет основные характеристики процессов обогащения.

Контрольные вопросы:

1.
На какие разделы делят методы обогащения полезных ископаемых?

2.
Какие методы относятся к основным, а какие к вспомогательным методам обогащения.

3.
Какие методы обогащения Вам известны?

4.
Охарактеризуйте процессы грохочения, дробления, измельчения и классификации.

Анализ кала методом обогащения в 10-15 раз лучше других методов справляется с поиском яиц гельминтов в фекалиях. Особенно это важно для ранней диагностики, потому что на начальной стадии гельминтоз лечить значительно легче. В профилактических целях сдавать кал методом обогащения рекомендуется всем, кто находится в группе риска.

Что представляет собой метод?

Виды анализа и методика проведения

Метод обогащения Калантарян

Метод обогащения по Шульману

Другие методы

Метод Бермана по обогащению кала при сдаче анализа на гельминты

Помогает выявить в кале личинки угрицы. Для эффективной диагностики лучше использовать еще теплый кал. В исследовании используется металлическая сетка, с мелкими делениями, помещенная в установленную на подставке стеклянную воронку. На дне воронки размещается резиновая трубочка с зажимом. В сетку помещают 5 грамм испражнений, поднимают и в воронку заливают теплую воду, пока низ сетки не погрузится в воду. Яйца гельминтов из-за термоактивности, сползаются к теплой воде и скапливаются на дне воронки. Спустя 4 часа, выпускают жидкость и помещают в центрифугу на 3 минуты. Оставшийся осадок подлежит микроскопическому изучению.

Метод обогащения по Красильникову

Для исследования применяют 1% раствор порошка для стирки «Лотос», в котором растворены каловые массы. При размешивании должна образоваться суспензия. 30 минут суспензия отстаивается, а затем помещается в центрифугу на 5 минут. В центрифуге яйца гельминтов очищаются от кала и выпадают в осадок, который исследуется под микроскопом.

Подготовка

  • За 2 дня до исследования не проводить очистительные клизмы, колоноскопию либо рентген желудка.
  • Накануне не употреблять жирную, копченую и жареную пищу.
  • В течение 3-х дней перед исследованием, при отсутствии противопоказаний, пропить желчегонное средство.
  • Вечером перед анализом не употреблять продукты, изменяющие цвет фекалий.
  • По возможности не принимать антибиотики, препараты железа и сорбенты.

Правила сбора биоматериала на анализ:

  • Перед сбором провести тщательное мытье внешних половых органов.
  • Заранее помочиться.
  • Сбор каловых масс осуществлять в специальный контейнер.
  • Пробы кала взять из 5-ти разных мест, в количестве 3-5 мл.
  • Следить, чтобы в анализ не попала урина и вода.
  • Образец для исследования должен попасть на диагностику в течение дня сбора.

Показания

Применение диагностической методики целесообразно при обнаружении следующих симптомов:

  • резкая смена стула (понос сменяется запором и наоборот);
  • зуд в области половых органов;
  • снижение аппетита;
  • повышенная раздражительность и ухудшение сна;
  • постоянное чувство голода;
  • одышка.

Копирование материалов сайта возможно без предварительного согласования в случае установки активной индексируемой ссылки на наш сайт.

Микроскопические методы диагностики гельминтозов, или зачем нужен анализ кала на яйца гельминтов?

Перед пациентами часто встают вопросы о том, как правильно сдать анализ кала на яйца глист, куда собрать материал для исследования, где и как его хранить, а также можно ли с уверенностью говорить об отсутствии гельминтов при отрицательном его результате. Однако, не все так просто.

Определить точное количество инфицированных в России практически невозможно, связанно это с самолечением, отсутствием обращений населения за медицинской помощью и массовой диспансеризации. Мнение экспертов сводится к тому, что в России заражены гельминтами более 20 миллионов человек.

Активное развитие туризма, а также усиление миграции приводят к тому, что число обнаруживаемых видов гельминтов на территории Российской Федерации прогрессивно увеличивается, при этом нередко можно встретить виды нехарактерные для территории нашей страны .

Выделяют три группы, которые отличаются друг от друга путем распространения и циклом развития.

Контактным гельминтам (имеют самый простой цикл развития) для перехода из одной стадии в другую не требуется промежуточный хозяин, они выделяют в окружающую среду практически зрелые или зрелые яйца, которые продолжают свое развитие, попав непосредственно на тело своей жертвы или на его одежду. Инвазивная форма - собственно яйца. Представителем данной группы является Enterobius vermicularis (острица) и др.

Геогельминты развиваются в земле до стадии личинки или зрелого яйца, в своем развитии не нуждаются в промежуточном хозяине, попадают в организм окончательного хозяина через загрязненные овощи, либо при контакте с зараженной землей. Представители данной группы: Trichocephalus trichiurus (власоглав), Ascaris lumbricoides (человеческая аскарида), Ancylostoma duodenale (анкилостома) и др.

Таблица сравнения источников заражения, локализации и методов лабораторной диагностики в зависимости от вида гельминта приведена ниже .

Таблица 1 - Методы лабораторной диагностики при разных видах глистных инвазий

1. Лабораторная диагностика гельминтозов

В настоящее время для диагностики гельминтозов применяются следующие методы: макроскопические и микроскопические (являются прямыми методами), серологические методы диагностики, ПЦР, УЗИ, рентгенологические методы и др.

1.1. Макроскопия

Макроскопический метод - это осмотр подготовленного материала невооруженным глазом или при помощи лупы. Применяется перед микроскопией полученного субстрата, предназначен для контроля за эффективностью проводимого лечения, а также для дифференциального диагноза при обнаружении частей цестод. Является достоверным при обнаружении члеников свиного и бычьего цепней, обрывков широкого лентеца и др.

1.2. Микроскопические методы исследования

Микроскопические методы исследования позволяют обнаружить яйца глистов (гельминтов) и личиночные формы в исходном субстрате. В качестве материала для микроскопии могут быть использованы кал, соскобы с перианальных складок, мокрота, кусочки мышечной ткани, содержимое желчного пузыря и др. Врач лабораторной диагностики в зависимости от предполагаемого диагноза выбирает один или несколько методов микроскопии.

Изучение кала под микроскопом с целью обнаружения яиц гельминтов называется копроовоскопией («копрос» - кал, «овум» - яйцо, «скопео» -смотрю). Изучение материала, полученного от больного, под микроскопом с целью выявления в нем личинок гельминтов называется ларвоскопией («ларва» - личинка).

1.3. Копроовоскопия (исследование кала на яйца глист)

В таблице 5 приведены различные модификации копроовоскопии. Метод Като-Миура (исследование толстого мазка фекалий под целлофаном) является самым простым, не требует значительных усилий и сложного оснащения лаборатории. Именно этот метод обычно используется при скрининговых анализах (например, при поступлении ребенка в детский сад, школу, ВУЗ, получении медицинской книжки декретированными слоями населения, оформлении на санаторно-курортное лечение или в стационар и так далее).

При подозрении на гельминтоз помимо метода Като-Миура врач-лаборант всегда использует так называемые методы обогащения (седиментации и флотации). Применение реагентов для осаждения или всплывания яиц гельминтов способствует их обнаружению даже при малой степени инвазии.

Таблица 2 - Методы овоскопии

Используются также количественные методы копроовоскопии. Данными методами определяют количество яиц глистов в 1 г. исследуемого материала, что позволяет приблизительно судить о степени инвазии гельминтами и эффективности проводимого лечения. Количественными могут быть метод толстого мазка под целлофаном по Като-Кац (измененный Като и Миура) и методы формалин-эфирного и уксусно-эфирного осаждения.

Информативность однократного исследования кала на яйца глист невелика, по разным оценкам около 30-50%. Этого вполне достаточно для выявления лиц с массивной инвазий при скрининге, однако порой недостаточно для постановки диагноза. Поэтому лечащий врач при подозрении на гельминтоз назначает как минимум 3 исследования с интервалом 7-10 дней между ними.

1.4. Копроларвоскопия (исследование фекалий на личинки гельминтов)

1.5. Иные способы овоскопии и ларвоскопии

Для обнаружения яиц остриц (Enterobius vermicularis) и бычьего цепня (Таеniarhynchus sagitanus) широко используется микроскопия соскобов с перианальной области. Сдать один из вариантов соскоба можно непосредственно в лаборатории или, получив необходимые для исследования пробирки и шпатели, произвести соскоб самостоятельно в домашних условиях с последующей сдачей исследуемого материла в лабораторию. О том, как правильно сдать соскоб на энтеробиоз, мы писали в соответствующей статье.

Эффективность всех методов соскоба с перианальных складок в диагностике гельминтозов примерно одинаковы, выбор метода зависит от наличия тех или иных средств для забора мазка.

Для диагностики гельминтозов также используют микроскопию содержимого двенадцатиперстной кишки. Желчь в лабораторию для исследования желательно доставить непосредственно после ее забора. Для обнаружения Strongyloides stercoralis (кишечной угрицы) используют исследование нативного (без окраски и обработки какими-либо реактивами) мазка.

Для обнаружения яиц трематод (Opisthorchus felineus, Clonorchis sinensis, Fasciola hepatica, Dicrocoelium lancealum) применяется метод центрифугирования желчи с последующей микроскопией.

Для обнаружения гельминтов (трихинелл) может использоваться биопсия поперечнополосатой мышечной ткани. Для изучения используют биоптат двуглавой или икроножной мышц, микроскопию желательно произвести непосредственно после забора материала. Применяется компресионная трихинеллоскопия и трихинеллоскопия методом искусственного переваривания в желудочном соке.

Для диагностики гельминтозов также возможно использование полимеразной цепной реакции, субстратом для которой являются кровь, моча, кал и др. Сложности в использовании этого метода связанны с малым количеством лабораторий, аккредитованных производить такие анализы. ПЦР позволяет обнаружить в исследуемом материале ДНК гельминта вне зависимости от того, жив он или нет.

Исходя из вышесказанного, мы видим, что для эффективной диагностики гельминтоза важно выбрать правильную методику, т.к. не всех гельминтов можно обнаружить при исследовании каловых масс.

2. Как правильно произвести сбор кала для анализа на яйца гельминтов?

Теперь разберем, как правильно сдавать анализ кала на яйца глист (на яйца гельминтов). Перед сдачей данного вида анализа какой-либо специальной подготовки не требуется. Для исследования не пригоден кал после очистительных клизм, ректальных свечей, применения слабительных средств.

Варианты приготовления наиболее простых растворов консерванта для хранения проб кала приведены в таблице ниже.

Дистиллированная вода 90,0 мл;

В данных консервантах полученный материал можно хранить до 2-3 недель. Для сбора подготовленного кала в консервант следует соблюдать соотношение: одна часть кала к трем частям выбранного консерванта.

3. Правила забора соскоба с перианальных складок

Если вам нужно сдать соскоб с перианальных складок, то это можно сделать в домашних условиях или непосредственно в поликлинике. Для получения материала в домашних условиях необходимо предварительно взять в поликлинике необходимые для этого приспособления (наборы, шпатели, пробирки), можно воспользоваться ватной палочкой, которая будет предварительно смочена в теплой воде или физрастворе (0,9% раствор NaCl).

Процедуру сбора материала проводят утром сразу после пробуждения, перед началом манипуляций не нужно проводить гигиену промежности, в туалет «по-большому» ходить тоже не нужно. Ватной палочкой протирают складки кожи вокруг анального отверстия. Для достоверности забор материала нужно производить сразу в нескольких местах. Готовый материал на ватной палочке помещают в контейнер или пробирку, плотно упаковывают. После сбора в течении двух часов материал для исследования следует доставить в лабораторию. Не забудьте подписать контейнер. Читать подробнее о модификациях классического соскоба на энтеробиоз можно здесь.

Результат исследования материала, как правило, будет готов в течении одного рабочего дня и уже на следующий день вы можете получить ответ, но некоторые лаборатории могут готовить результаты дольше.

Если в исследуемом материале не обнаружены яйца гельминтов или их личинки, то на бланке результата будет написано: «Яйца глист не обнаружены», в остальных случаях будет написано какой вид гельминтов обнаружен.

Таким образом, пациентам важно помнить:

  1. 1 Стандартный анализ кала на яйца глист неплохой метод массового обследования населения, в том числе декретированных групп.
  2. 2 Не каждый гельминтоз можно распознать с помощью стандартного исследования кала на яйца глист, в связи с этим при подозрении на глистные инвазии лучше всего обратиться к врачу и не заниматься самолечением.
  3. 3 Метод диагностики в каждом конкретном случае выбирает врач, основываясь на наличии тех или иных симптомов инвазии.
  4. 4 Результаты исследования кала на яйца глист напрямую зависят от правильности сбора материала. Если вы будете соблюдать вышеперечисленные требования, вероятность получить правильный результат будет гораздо выше.
  5. 5 Если вы получили ответ «Яйца глист не обнаружены», есть вероятность того, что результат ложноотрицательный. В этом случае лечащим врачом могут быть рекомендованы повторные исследования с интервалом в 7-14 дней, а также назначены другие диагностические мероприятия.

Дистиллированная вода 90,0 мл;

Дистиллированная вода 90,0 мл;

Обнаружение яиц гельминтов в кале методом обогащения

Кал суспензируют во флотационном растворе, имеющем большую относительную плотность, чем яйца гельминтов. При этом яйца гельминтов всплывают на поверхность, образовавшуюся пленку исследуют под микроскопом.

В качестве реактива используют флотационный раствор по Калантарян (1 кг нитрата натрия растворяют в 1 л воды, кипятят смесь до образования пленки и переливают без фильтрования в сухие бутылки; относительная плотность раствора 1,38) либо флотационный раствор по Брудастову - Красноносу (900 г нитрата натрия и 400 г нитрата калия растворяют при подогревании в 1 л воды; относительная плотность раствора 1,47-1,48).

Методика обнаружения яиц гельминтов в кале методом обогащения

В химических стаканах тщательно размешивают стеклянной палочкой 5-10 г кала и 100- 200 мл одного из флотационных растворов. Сразу же после окончания размешивания удаляют стеклянной палочкой всплывшие на поверхность крупные частицы. К поверхности солевого раствора прикладывают предметное стекло. Если между смесью и предметным стеклом остается пустое пространство, то добавляют солевой раствор до полного соприкосновения смеси с предметным стеклом.

Оставляют для отстаивания на 20-30 мин, после чего предметное стекло снимают, кладут под микроскоп пленкой кверху и просматривают без покровного стекла всю пленку, прилипшую к поверхности предметного стекла. Во избежание высыхания во время исследования пленку можно смешать с дву- мя-тремя каплями 50 % раствора глицерина.

Учитывают все обнаруженные в препарате яйца гельминтов.

Описанным методом можно выявить заражение аскаридами, власоглавами, анкилостомидами, тениидами, трематодами, лентецами и другими видами гельминтов.

Анализ кала на определение яиц различных гельминтов

Такое исследование позволяющее обнаружить присутствие глистов в человеческом организме

Когда сдавать?

Анализ кала на яйца различных гельминтов врач назначает в случае:

Показаниями к проведению исследования служат:

  • Неустойчивый стул или диарея неясного генеза.
  • Тошнота, рвота, боли в животе.
  • Заболевания пищеварительной системы.
  • Вульвовагинит, зуд в перианальной области.
  • Инфекции мочевыделительной системы.
  • Потеря веса, утомляемость, плохой аппетит.
  • Для детей ─ отставание в физическом и психоэмоциональном развитии.

Какова подготовка?

Особой подготовки не нужно. Перед исследованием пациенту советуют не принимать в пищу продукты, богатые клетчаткой, сорбенты, лекарства или продукты, влияющие на цвет стула. Если пациент принимал накануне антибиотики – имеет смысл сдавать кал при подозрении на гельминты спустя 7-10 дней после их отмены.

Копрологические исследования в диагностике гельминтозов имеют большое значение

Как правильно сдавать кал для исследования на простейших и яйца глистов?

  • Необходимо взять последнюю, а не первую порцию стула, лучше, если она будет жидкой.
  • Собирать материал в специальную стерильную посуду, предназначенную для копрологических исследований, приобретается в любой аптеке.
  • Доставить образец в лабораторию нужно в течение ближайших 2-3 часов, если это займет больше времени – использовать консерванты.

Как происходит анализ кала на яйца гельминтов в лаборатории?

Анализ кала на яйца глистов называется гельминтоовоскопией. К ней относят макроскопические и микроскопические методики, которые могут использоваться последовательно.

Макроскопия

При применении этого метода нет риска заражения персонала лаборатории

Среди этих методов исследования есть также способ отстаивания – когда фекалии смешивают с водой и отстаивают, спустя некоторое время верхнюю часть жидкости сливают, добавив новой до первоначального объема. Как только жидкость приобретает прозрачность - ее полностью удаляют, а осадок внимательно осматривают.

Получают мазок, смешивая кал с глицерином. При небольшом количестве яиц глистов в препарате они не определяются.

Если используется метод Като, делается мазок кала на предметное стекло, сверху накрывается целлофановой пленкой, смоченной в растворе Като, ─ содержит фенол, глицерин и малахитовый зеленый в необходимых пропорциях. Эта методика эффективнее изучения нативного материала.

Метод Шульмана иначе называется методом закручивания – материал аккуратно перемешивают, не прикасаясь к сосуду изнутри в смеси физиологического раствора и воды. Яйца гельминтов оказываются в центре. Далее стеклянной палочкой переносят небольшое количество жидкости на стекло для приготовления препарата.

Используют для определения энтеробиоза. Липкую ленту, наклеенную на предметное стекло, микроскопируют; материал собирают путем ее прикладывания к перианальным складкам.

Фекалии смешивают с водой, процеживают и отстаивают в течение 30 минут. Надосадочную жидкость сливают. До первоначального объема добавляют еще жидкости, материал встряхивают и снова отстаивают. Повторяют, пока верхний слой жидкости не станет прозрачным – из осадка готовят препарат и микроскопируют. Ищут в основном этим методом яйца трематод.

Общий анализ кала (копрограмма) включает в себя макроскопическое, химическое и микроскопическое исследование

Существуют методы обогащения, основанные на разнице физических свойств (удельный вес) яиц гельминтов и используемых флотирующих растворов. К ним относятся:

  • Формалин-эфирная или уксусная седиментация и ее модификации.

Суть методик седиментации заключается в осаждении яиц гельминтов в используемых химических реактивах ввиду их большего удельного веса.

Анализ кала на яйца гельминтов проводится в течение несколько дней. В специальные емкости с консервантом на основе формалина (может быть заменен на уксусную кислоту) добавляют образцы кала каждый день или с интервалом в несколько дней и хранят до нескольких недель. После центрифугирования исследуют осевшую часть под микроскопом.

Для поиска вегетативных форм или цист простейших добавляют раствор Люголя.

Раствор Люголя – препарат на основе молекулярного йода

Возможны модификации методов седиментации с использованием систем с готовыми реактивами.

Этими способами хорошо определяются яйца трематод.

  • Методы флотации (всплывания): Калантарян, Фюллеборна.

Роль флотационного раствора может выполнять насыщенный раствор поваренной соли – метод Фюллеборна (нематоды, лентец) или нитрата натрия – метод Калантарян (не всплывают яйца трематод). Может быть также использован нитрат аммония.

Основан на воздействии детергентов на исследуемый материал, при котором яйца гельминтов осаждаются. Детергент, которым служит стиральный порошок, полностью растворяют в материале. Производят микроскопию осадка после центрифугирования. Так можно определить все виды гельминтов.

Результат и его особенности

Сдавать анализ можно по назначению врача, получив направление при обращении в поликлинику, или по собственному желанию в частной лаборатории. Выбор метода исследования материала лаборантом будет основан на том, какое заболевание подозревает доктор, и яйца каких глистов нужно найти.

Микроскопическое исследование - метод более эффективый, чем нативный мазок

  • Субъективность.
  • Вероятность сдачи пациентом непоказательного кала на гельминты.
  • Слишком долгое время доставки в лабораторию.
  • Особенности гельминтов, такие, как например, феномен «прерывистого цистовыделения» у простейших.

Копирование материалов сайта запрещено! Допускается перепечатывание информации только при условии указания активной индексируемой ссылки на наш веб-сайт.

Методы обогащения

1) концентрация яиц на поверхности жидкости (методы флотации, всплывания);

2) концентрации яиц в осадке (методы осаждения, седиментации).

Метод Калантарян (с флотационным раствором):

Основан на том, что в жидкости с высокой относительной плотностью яйца гельминтов как более легкие всплывают на поверхность, где и концентрируются. Для этого используется раствор Калантрян (1 кг нитрата натрия растворяют в 1 л воды; смесь кипятят до образования пленки, остужают; относительная плотность раствора 1,38).

Оставляют для всплытия яиц на 20-30 мин, после чего предметное стекло снимают, кладут под микроскоп и просматривают без покровного стекла.

Метод Фюллеборна:

Метод Фюллеборна позволяет исследовать большое количество материала и широко используется. В небольшую баночку (обычно мазевую) помещают 5 г фекалий и тщательно размешивают с 20-кратным количеством насыщенного раствора хлорида натрия, добавляя его при помешивании небольшими порциями.

Так как яйца трематод, большинства цестод всплывают, нужно исследовать и осадок со дна баночки. Препараты из осадка мало прозрачны, поэтому для просветления можно добавить каплю глицерина.

Метод Красильникова (с применением детергентов):

Под действием поверхностно-активных веществ, входящих в состав детергентов (стиральных порошков), яйца гельминтов освобождаются от фекальных масс и концентрируются в осадке.

Метод закручивания (по Шульману):

Метод закручивания (по Шульману) очень прост, более эффективен, чем метод нативного мазка, однако ограничиваться им при исследовании на гельминты нельзя.

Он служит дополнением к методам концентрации яиц и личинок.

Метод Бермана:

Метод Бермана применяется для выявления личинок гельминтов (угрицы). Полученный от больного кал (лучше свежевыделенный) в количестве 5 г помещают на мелкую металлическую сетку (удобна цедилка для молока) в стеклянную воронку, закрепленную в штативе. На нижний конец воронки надевают резиновую трубку с зажимом (аппарат Бермана). Сетку (цедилку) приподнимают и в воронку наливают нагретую до 50 °С воду таким образом, чтобы нижняя часть сетки была погружена в воду.

Обогащение руд основано на использовании различий в физических и физико-химических свойствах минералов, от величины вкрапленности ценных минералов.

Физические свойства минералов - это цвет, блеск, плотность, магнитная восприимчивость, электропроводность, смачиваемость поверхности минерала.

Существуют различные методы обогащения.

Гравитационный метод обогащения основан на использовании разницы в плотностях, размеров и форм минералов. Применяется этот метод для золота, олова, вольфрама, россыпей, редких металлов, железа, марганца, хрома, угля, фосфоритов, алмазов.

Разделение минералов по плотности можно производить в воде, воздухе и тяжелых средах. К гравитационным процессам относятся:

Обогащение в тяжелых средах – применяется для руд с крупной вкрапленностью 100-2 мм;

Отсадка – основана на разности в скоростях падения частиц в вертикальной струе воды, применяется для крупно вкрапленных руд 25-5 мм;

Обогащение на концентрационных столах – связано с разделением минералов под действием сил, возникающих в результате движения стола и потока воды, текущего по наклонной плоскости стола, применяется для руд крупностью 3-0,040 мм;

Обогащение на шлюзах – разделение минералов происходит под действием горизонтального потока воды и улавливания тяжелых минералов покрытием дна шлюзов, применяется для руд крупностью 300-0,1 мм;

Обогащение на винтовых, струйных и конусных сепараторах – разделение происходит под действием потока воды, движущейся по наклонной плоскости для руд крупностью 16-1 мм.

Магнитный метод обогащения основан на разделении минералов за счет разницы минералов в удельной магнитной восприимчивости и различии траекторий их движения в магнитном поле.

Флотационный метод обогащения основан на различии в смачиваемости отдельных минералов и как следствие избирательном прилипании их к воздушным пузырькам. Это универсальный метод обогащения, применяется для всех руд, особенно для полиметаллических. Крупность обогащаемого материала 50-100% класса –0,074 мм.

Электростатическое обогащение основано на различии в электропроводности минералов.

Кроме того, существуют специальные методы обогащения, к которым относятся:

Декрипитация, основана на способности минералов растрескиваться по плоскостям спайности при сильном нагревании и сильном охлаждении;

Рудоразборка по цвету, блеску, бывает ручная, механическая, автоматизированная; применяется обычно для крупного материала >25 мм;

Радиометрическая сортировка, основана на различной способности минералов испускать, отражать и поглощать те или иные лучи;

Обогащение по трению, основано на различии в коэффициентах трения;

Химическое и бактериальное обогащение, основано на свойствах минералов (например, сульфидов) окисляться и растворяться в сильно кислых растворах. Металл растворяется, и затем его извлекают химико-гидрометаллургическими методами. Присутствие в растворах некоторых типов бактерий интенсифицирует процесс растворения минералов.

Они включают ручную рудоразборку, радиометрическое обогащение, обогащение по трению и форме, обогащение по упругости, термоадгезионное обогащение, а также обогащение, основанное на селективном изменении размера куска при дроблении.

Ручная сортировка (рудоразборка) представляет собой метод обогащения, при котором используется разница во внешних признаках (цвет, блеск, форма) минералов. Например, в мартитовой руде часто присутствуют сплошные включения известняков. Раздробив такую руду до крупности -100 мм, легко можно выбрать куски известняка. Рудоразборка осуществляется при крупности материала 10 – 300 мм и производится на специальных площадках, неподвижных и круглых подвижных столах и ленточных конвейерах. Ленточные конвейеры, используемые для рудоразборки, следует устанавливать под углом не более 18°, скорость ленты должна быть не более 0,4 м/с. Места рудоразборки должны быть хорошо освещены. Иногда освещение подбирают таким образом, чтобы усилить различие во внешних признаках сортируемых кусков руды. Данный метод достаточно дорог и низко производителен. Ручная рудоразборка применяется при обогащении дорогостоящего сырья (золото, алмазы и др.)

Наибольшее распространение из специальных методов получило радиометрическое обогащение, основанное на различии в способности минералов отражать, испускать и поглощать различные виды излучения.

Радиометрическое обогащение применяют при переработке руд цветных металлов (радиоактивных, редких, тяжелых и др.), алмазов, флюоритовых руд. Принцип всех способов радиометрического обогащения одинаков: на руду, перемещаемую в пространстве, действует какое либо излучение от источника; сигнал, возникающий от взаимодействия минералов с этим излучением, улавливается приемником; информация передается в специальный прибор-радиометр, где обрабатывается и подается команда на исполнительный механизм, направляющий кусок или в сборник концентрата или в сборник хвостов. Для отсечения посторонних сигналов в схеме предусматривается установка фильтров. В случае авторадиометрического обогащения схема значительно упрощается, так как отпадает необходимость в источнике первичного излучения (радиоактивные минералы сами испускают излучение). В качестве первичного излучения используются излучения широкого диапазона длины волн, от самых коротких гамма излучений до самых длинных радиоволн. По длине волны различают следующие группы первичного излучения, применяемых в радиометрических сепараторах:

По характеру взаимодействия минералов с первичным излучением различают следующие группы: 1) возбуждение вторичного излучения (люминесценции, нейтронного и др.); 2) отражение первичного излучения; 3) поглощение (абсорбция) первичного излучения.

Одними из самых распространенных способов радиометрического обогащения нерадиоактивных руд являются фотометрический и рентгенолюминесцентный.

По способу осуществления радиометрическое обогащение подразделяется на крупно порционную сортировку и радиометрическую сепарацию. При крупно порционной сортировке, являющейся одним из самых дешевых и высокопроизводительных методов обогащения, обогащению подвергаются не отдельные куски, а вагоны, самосвалы, ковши и т.п. Например, крупно порционная сортировка авторадиометрическим методом заключается в регистрации излучения вагонеток с рудой. Если излучение выше некого порогового (а это значит, что в руде много полезного радиоактивного минерала), то вагонетка разгружается и обогащается на фабрике, если излучение меньше порогового (мало полезного компонента) вагонетка отправляется прямо в отвал. Недостаток метода в том, что применим далеко не для всех руд. Полезный (радиоактивный) компонент должен быть неравномерно распределен по разным вагонеткам (в одних его мало в других много), а это бывает достаточно редко. Радиометрическая сепарация предусматривает «просмотр» каждого куска руды. При этом достигаются весьма высокие технологические показатели, но производительность невысока особенно для мелких частиц.

Рентгено-люминисцентный метод основан на различиях в интенсивности люминесценции (холодного свечения) минералов под влиянием рентгеновского излучений. Процесс люминесценции складывается из трех стадий: поглощения энергии возбуждающего излучения, преобразования и передачи энергии возбуждения внутрь тела и испускания света в центрах свечения с возвращением минерала в равновесное состояние. Способностью люминесцировать обладают многие минералы: шеелит, флюорит, алмаз и др. Люминесценция большей части минералов обусловлена присутствием в них примесей-активаторов (люминогенов).

Рентгенолюминесцентный метод является основным для обогащения алмазосодержащих руд. С его помощью обогащаются также флюоритовые и шеелитовые руды. Источником первичного излучения в рентгено-люминесцентных сепараторах являются рентгеновские трубки с различными анодами (вольфрам, медь, серебро, молибден и др.), что дает возможность выбирать оптимальное первичное излучение для данного вида сырья. В сепараторах предпочтительнее использовать трубки с широким пучком излучения. Приемником сигнала люминесценции служат различные фотоэлементы и фотоумножители, тип фотоэлемента определяется длиной волны возбуждаемой люминесценции.

Большинство радиометрических сепараторов имеет сходную конструкцию они имеют питатели, источник излучения (кроме авторадиометрических), регистрирующий прибор и исполнительный механизм. Рентгено-люминесцентные сепараторы отличаются устройством питателей, режимом подачи материала и способом вывода куска. У нас созданы сепараторы серии ЛС (рис. 2.23), которые широко используются для доводки гравитационных и флотационных алмазных концентратов, а также для первичного обогащения алмазных руд. Сепаратор имеет два питателя, второй работает быстрее, чем первый и поэтому частицы на нем вытягиваются в линию и падают по одной. Если частица способна люминесцировать (алмаз) то под действием рентгеновского излучения она начинает светится. Это свечение регистрируется фотоэлектронным умножителем и затем сигнал поступает на исполнительный механизм например, пневмоклапан, который отдувает частицу струей воздуха. Из зарубежных следует отметить сепараторы серии XR, разработанные фирмой«Гансонс Сортекс лимитед» (Великобритания).

Фотометрический метод основан на использовании в различий в способности минералов отражать, пропускать или преломлять свет. Схема фотометрического сепаратора приведена на рисунке 2.24.

Обогащение по трению и форме. Скорость движения частиц по наклонной плоскости (при заданном угле наклона) зависит от состояния поверхности самих частиц, их формы, влажности, плотности, крупности, свойств поверхности, по которой они перемещаются, характера движения (качение или скольжение), а также среды, в которой происходит разделение. Основным параметром, характеризующим минеральные частицы с точки зрения движения их по наклонной плоскости, является коэффициент трения, величина которого определяется в основном формой минеральных частиц. Обогащение по трению будет тем благоприятнее, чем больше разница в коэффициенте трения для частиц пустой породы и полезных минералов. Частицы могут перемещаться под действием собственной силы тяжести (при движении по наклонным плоскостям – рис. 2.25), центробежной силы (при движении по горизонтальной плоскости вращающегося диска) и в результате комбинированного действия сил собственной тяжести, центробежной и трения (винтовые сепараторы).

Эти свойства используются при обогащении алмазной мелочи, асбестовых руд, слюды, разделении абразивов и других материалов.

Обогащение по упругости основано на том, что зерна минералов различной упругости по-разному отскакивают от рабочей поверхности аппаратов и движутся по различным траекториям. Способ широко применяется при сортировке гравия.

Термоадгезионный способ обогащения заключается в том, что при облучении руды световым потоком темноцветные минералы нагреваются сильнее, чем светлые. Попадая затем на конвейер, поверхность которого покрыта термочувствительным материалом (температура пластификации 30-50 о С), более нагретые темноцветные минералы прилипают к этой поверхности, а светлые минералы не прилипают и движутся по своей траектории. Способ широко применяется при обогащении каменных солей.

Процесс обогащения по твердости заключается в том, что при измельчении минерального сырья разрушаются более мягкие материалы. Более твердые остаются в крупных кусках.. Затем на грохотах или классификаторах отделяют мелкий продукт от крупного. Такой процесс называют избирательным измельчением. Очень часто дробление и грохочение совмещены в одном аппарате. Способ широко применяется при обогащении углей и осуществляется в барабанных дробилках.

Специальные методы классифицируются на следующие виды: 1. Магнитное и электрическое обогащение; 2. Сортировка; 3.Обогащение с использованием эффектов взаимодействия кусков разделяемых компонентов с рабочей поверхностью сепаратора; 4.Обогащение на основе селективно направленного изменения размеров кусков компонентов полезного ископаемого; 5.Обогащение на основе разницы в поверхностных свойствах разделяемых минералов.

1)Магнитное обогащение (магнитная сепарация) основано на использовании различий в магнитных свойствах компонентов разделяемой мех. смеси с размером частиц до 100, иногда до 150 мм в неоднородном постоянном или переменном магн. поле. Процесс осуществляют в водной или воздушной среде в валковых, барабанных, роторных и иных магн. сепараторах. Магн. сепарацию широко применяют при обогащении железных, марганцевых, медно-никелевых руд и руд редких металлов.

Электрическое обогащение (электрическая сепарация) основано на различии в электрич. св-вах компонентов ископаемого сырья.

Барабанный электростатический сепаратор: 1-бункер для исходного материала; 2-заряженный барабан; 3-ци-линдрич. электрод; 4-устройство для очистки барабана; 5-7-приемники соотв. для непроводников, полупроводников и проводников. 2)СОРТИРОВКА ПОЛЕЗНЫХ ИСКОПАЕМЫХ. К основным способам сортировки относятся: 1.Ручная сортировка (породовыборка, рудоразборка, углесортировка). Ручная сортировка применяется когда не могут быть применены механическое или химическое обогащение; когда механические процессы не обеспечивают необходимого качества разделения, 2.Механизированная сортировка, включающая процессы с общим названием радиометрические методы обогащения.3)ОБОГАЩЕНИЕ С ИСПОЛЬЗОВАНИЕМ ЭФФЕКТОВ ВЗАИМОДЕЙСТВИЯ КУСКОВ РАЗДЕЛЯЕМЫХ КОМПОНЕНТОВ. 1.Обогащение по упругости; 2.Обогащение по трению; 3.Комбинированное обогащение по трению и упругости; 4.Обогащение по форме; 5.Термоадгезионный метод обогащения; 6.Обогащение на жировых поверхностях.4.Обогащение на основе селективно направленного изменения размеров кусков компонентов полезного ископаемого ; 1.Избирательное дробление-применимо для полезных ископаемых, имеющих крупные агрегаты ценного компонента, которые отличаются по прочности от вмещающих пород. 2.Избирательное измельчение- как и избирательное дробление, использует различия в прочности компонентов полезного ископаемого. 3.Промывка полезных ископаемых- используется при обогащении рассыпных месторождений редких и благородных металлов, руд черных металлов (железа, марганца), фосфоритов, каолинов, стройматериалов (песка, щебня), флюсов и т.д.

4.Оттирка полезных ископаемых-используют при переработке стекольных песков, горного хрусталя, полевых, хромитовых шпатов, хромитовых концентратов, искусственных минералов, а также при подготовке к флотации углей. 5.Декрипитационное разрушение-избирательное раскрытие, основанное на способности отдельных минералов разрушаться по плоскостям спайности при нагревании и последующем быстром охлаждении или только при нагревании. 6.Термохимическое разрушение- применяют для руд, породная часть которых представлена карбонатами, например, кальцитом, магнезитом, сидеритом, а ценный компонент при этом представлен термически устойчивыми минералами - пирохлором, фторапатитом и др. 7.Изменение размеров частиц с помощью термообработки- заключается в нагревании обрабатываемого продукта до температуры плавления серы, образования водной эмульсии и последующего ее охлаждения.

5)ОБОГАЩЕНИЕ НА ОСНОВЕ РАЗНИЦЫ В ПОВЕРХНОСТНЫХ СВОЙСТВАХ РАЗДЕЛЯЕМЫХ МИНЕРАЛОВ

Селективная коагуляция- объединение частиц дисперсной фазы в агрегаты вследствие сцепления (адгезии) частиц при их соударениях.

Селективная флокуляция-совокупность процессов выборочной агрегации тонкодисперсных частиц полезных ископаемых в микрофлокулы крупностью 100-300 мкм с помощью реагентов -флокулянтов различной природы.

Адгезионное обогащение- этот способ обогащения основан на избирательном адгезионном взаимодействии извлекаемого компонента сгидрофобной поверхностью в водной

Амальгамация - метод извлечения металлов из руд растворением в ртути. Амальгаму отделяют от пустой породы и ртуть отгоняют.

mob_info