Тепловое оборудование виды характеристика. Тепловое оборудование: виды, характеристики, сферы применения. Конструктивные особенности плит типа пэсм

Тепловое оборудование предприятий общественного питания классифицируется по следующим основным признакам:

 по технологическому назначению;

 по способу обогрева;

 по источнику тепла;

 по принципу работы;

 по конструктивному решению;

 по степени автоматизации.

По технологическому назначению различают универсальное и специализированное тепловое оборудование.

К универсальному относят такое оборудование, на котором можно производить все виды тепловой обработки. Наиболее в полной мере этому соответствуют различные виды кухонных плит. Относительно недавно появилась новая группа тепловых шкафов, позволяющих производить многие виды тепловой обработки, в том числе варку на пару, жарку в сухом и влажном паре, тушение, бланширование, выпекание и др. Такие шкафы получили название пароконвектоматов. Условно их также можно отнести к универсальному тепловому оборудованию.

Специализированное оборудование подразделяется на варочное, жарочное, водогрейное и вспомогательное.

К варочному относятся различные виды пищеварочных котлов, пароварочных аппаратов, варочных устройств и т.д.

К жарочному оборудованию относятся сковороды, фритюрницы, жарочные (пекарные) шкафы, различные виды грилей и др.

К водогрейному оборудованию относятся водонагреватели, кипятильники, кофеварки, аппараты для приготовления горячих напитков и др.

К вспомогательному оборудованию относят тепловое оборудование, предназначенное для поддержания температуры готовой продукции при раздаче и реализации готовой продукции: мармиты, тепловые стойки, диспенсоры и т.д.

По способу обогрева тепловое оборудование делится на контактное и поверхностное.

Примером контактного оборудования являются пароварочные аппараты, жарочные и пекарные шкафы, фритюрницы и др., в которых продукт нагревается при непосредственном контакте с теплоносителем – паром, горячим воздухом или жиром. К контактному оборудованию относятся и теплообменники Такое оборудование характеризуется высокой производительностью благодаря тому, что нагрев продукта происходит одновременно и равномерно по всей его поверхности.

Оборудование с поверхностным способом обогрева делится на оборудование с непосредственным и косвенным нагревом.

В оборудовании с непосредственным обогревом передача тепла осуществляется через разделительную стенку. К такому оборудованию относятся сковороды, твердотопливные или газовые пищеварочные котлы с непосредственным обогревом и др. Его основным недостатком является неравномерность нагрева.

В оборудовании с косвенным нагревом теплообмен между источником тепла и продуктом происходит через промежуточные теплоносители - воду, водяной пар, минеральное масло и т.д. Такой способ теплообмена применяется в некоторых типах пищеварочных котлов и сковород, у которых промежуточный теплоноситель находится в замкнутой полости между источником теплоты и рабочей камерой. Это создает более равномерное температурное поле, но имеет большую тепловую инерционность.

По источникам тепла различают огневое, газовое, паровое и электрическое тепловое оборудование.

По принципу работы различают оборудование периодического, непрерывного и комбинированного действия.

По конструктивному исполнению тепловое оборудование делится на несекционное, секционное, немодулированное и модулированное.

Несекционное оборудование характеризуется различной мощностью и размерами, что затрудняет его рациональное размещение в рабочих помещениях, ограничивает возможности механизации и автоматизации технологических процессов.

Секционное оборудование предусматривает изготовление отдельных легко заменяемых и собираемых секций с различной мощностью и технологическими возможностями. Секционное оборудование позволяет применять единый размер - модуль, за который в нашей стране принята единица М =100 мм. Длина и ширина отдельных секций должна быть кратной этой величине. Обычно ширина напольного оборудования составляет 4М, высота  850 мм. Исключение составляют жарочные и пекарные шкафы вертикального исполнения высота которых обычно составляет 1650 мм.

По степени автоматизации различают неавтоматическое, автоматическое и полуавтоматическое тепловое оборудование. При эксплуатации неавтоматического оборудования контроль за его безопасной работой и соблюдением теплового режима производится обслуживающим персоналом. В полуавтоматическом оборудовании безопасность работы обеспечивается автоматически, а тепловой режим  вручную. В автоматическом оборудовании и то и другое делается автоматически. В наилучшей степени автоматизации поддается газовое и электрическое тепловое оборудование.

Для теплового оборудования отечественного производства принята буквенно  цифровая индексация.

Первая буква обозначает технологическое назначение оборудования: К  котел, П  плита, Ф  фритюрница, Ш  шкаф и т.д.

Вторая буква обозначает один из важнейших признаков классификации: ПС  плита секционная, КН  кипятильник непрерывного действия, КП  котел пищеварочный.

Третья буква означает тип энергоносителя: КПТ  котел пищеварочный твердотопливный, КНЭ  кипятильник непрерывного действия электрический Модульное оборудование обозначается буквой М в конце буквенной маркировки. Например, АПЭСМ  аппарат пароварочный электрический секционный модульный

Цифрами обозначаются основные типоразмеры или технико-экономические характеристики. Например. КПЭ-60  котел пищеварочный электрический вместимостью 60 дм 3 , КНТ-200  кипятильник непрерывного действия твердотопливный производительностью 200 кг/ч.

Тепловое оборудование для обработки продуктов классифицируется по следующим основным признакам: способу обогрева, технологическому назначению, источникам тепла.

По способу обогрева оборудование делится на оборудование с непосредственным и косвенным обогревом. Непосредственный обогрев - это передача тепла через разделительную стенку(плитка, кипятильник). Косвенный обогрев - это передача тепла через промежуточную среду(пароводяная рубашка котла). По технологическому назначению тепловое оборудование делится на универсальное(эл.плита) и специализированные(кофеварка, пекарский шкаф).

По источникам тепла тепловое оборудование делится на электрическое, газовое, огневое и паровое.

По степени автоматизации тепловые аппараты подразделяются на неавтоматизированные, контроль за которыми осуществляет обслуживающий работник, и автоматизированные, где контроль за безопасной работой и режимом тепловой обработки обеспечивает сам тепловой аппарат при помощи приборов автоматики.

На предприятиях общественного питания тепловое оборудование может использоваться как несекционное или секционное, модулированное.

Несекционное оборудование, это оборудование, которое различно по габаритам, конструктивному исполнению и архитектурному оформлению. Такое оборудование предназначено только для индивидуальной установки и работы с ним, без учета блокировки с другими видами оборудования. Несекционное оборудование для своей установки требует значительных производственных площадей, т.к. обслуживание такого оборудования осуществляется со всех сторон.

В настоящее время промышленность осваивает серийное производство секционного модулированного оборудования, применение которого целесообразно на больших предприятиях общественного питания. Преимущество секционного модулированного оборудования в том, что выпускается оно в виде отдельных секций, из которых можно комплектовать различные технологические линии. Секционное модулированное оборудование имеет единые размеры по длине, ширине и высоте. Такое оборудование устанавливается линейно по периметру или по центру помещения и установленная секция способствует повышению производительности труда и общей культуре на производстве.

На все виды тепловых аппаратов разработаны и утверждены ГОСТы, которые являются обязательными для всех заводов и предприятий, связанных с выпуском или эксплуатацией оборудования.

ГОСТ указывает сведения аппарата: наименование, индексацию, параметры, требования ТБ, БТ и производственной санитарии, комплектность, а также требования к транспортировке, упаковке и хранению.

Все тепловые аппараты имеют буквенно-цифровую индексацию, первая буква которой соответствует наименованию группы, к которой относится данный тепловой аппарат. Например: котел-К, шкаф - Ш, плита - П и т.д. Вторая буква - наименованию вида оборудования: пищеварочные - П, непрерывного действия -Н и т.д. Третья буква - наименование теплоносителя: электрические -Э, газовые -Г и т.д. Цифрами обозначают основные параметры теплового оборудования. Например: КПП -160 -котел пищеварочный, паровой, вместимостью 160 литров.

Научно-технический прогресс современного производства пищевой промышленности внес большие изменения в способы тепловой обработки кулинарной продукции предприятий общественного питания. Наряду с традиционными поверхностными (кондуктивными) способами приготовления пищи широко используют объемные способы тепловой обработки продуктов.

Объемные способы нагрева основываются на взаимодействии продукта с электромагнитным полем. Электромагнитная энергия от генератора излучения, превращаясь в тепловую, проникает в массу продукта на значительную глубину и за очень короткий период времени обеспечивает его прогрев до готового состояния.

Поверхностные способы приготовления пищевой продукции по технологическому назначению классифицируются на варочные, жарочные, жарочно-пекарные, водогрейные и вспомогательные. Варочное оборудование включает в себя:

пищеварочные котлы, технологической средой которых является вода или бульон при температуре 100°С;

автоклавы, в которых тепловая обработка осуществляется паром при температуре 135 ... 140°С;

пароварочные аппараты, в которых технологический процесс приготовления пищи осуществляют паром при температуре 105 ... 107 °С;

вакуум-аппараты, рабочей средой которых является греющий пар при температуре 140 ... 150°С.

В группу жарочного оборудования входят:

сковороды, на которых операцию жарки осуществляют в небольшом количестве жира при температуре 180 ... 190°С;

фритюрницы, процесс жарки в которых происходит в жире при температуре 160 ... 190°С;

жарочные шкафы (грили, шашлычные печи), осуществляющие процесс приготовления продуктов в горячем воздухе при температуре 150 ... 300°С.

К жарочно-пекарному оборудованию относят: печи, жарочные и пекарные шкафы, в которых технологической средой является горячий воздух при температуре 150 ... 300°С;

паро-жарочные аппараты, рабочей средой которых является смесь горячего воздуха и перегретого пара при температуре 150 ... 300°С.

Водогрейное оборудование представлено кипятильниками и водонагревателями.

Вспомогательное оборудование включает в себя мармиты, тепловые шкафы и стойки, термостаты, оборудование для транспортировки пищи.

Объемные способы тепловой обработки продуктов осуществляют: в СВЧ-шкафах периодического и непрерывного действия; сверхвысокочастотный способ обеспечивает большую скорость нагрева продукции;

ИК-аппаратах; инфракрасный нагрев основан на интенсивном поглощении ИК-излучений свободной водой, находящейся в продуктах;

аппаратах ЭК-нагрева; электроконтактный нагрев основан на тепловой энергии, выделяемой током в течение определенного времени при прохождении его через продукт, обладающий определенным активным (омическим) электросопротивлением;

установках индукционного нагрева; индукционный нагрев пищевых продуктов, особенно с повышенной влажностью, возникает при помещении их во внешнее переменное магнитное поле, в котором по закону электромагнитной индукции возникают вихревые токи (токи Фуко), линии которых замыкаются в толще продукта, электромагнитная энергия рассеивается в его объеме, вызывая нагрев.

Основным преимуществом СВЧ является быстрота нагрева пищевой продукции.

Однако этому способу нагрева присущи и недостатки - отсутствие корочки на поверхности продукта и, как правило, естественный цвет сырья.

Положительными показателями ИК-нагрева являются равномерный цвет и толщина поджаривания.

Вместе с тем этому способу присущи недостатки:

не все продукты можно подвергать ИК-нагреву;

при высокой плотности потока ИК-излучения возможен «ожог» продукта.

ЭК-нагрев применяется как самостоятельный вид обработки, так и в комбинации с другими способами. В частности, он успешно используется в хлебопекарном производстве для прогрева тестовой массы при выпечке хлеба, в производстве сосисок, при бланшировании мясопродуктов.

Индукционный способ нагрева пока еще не получил широкого распространения на предприятиях общественного питания, однако он обладает значительными экономическими возможностями для успешного применения в будущем.

Учитывая то, что поверхностные и объемные способы тепловой обработки пищевой продукции наряду с достоинствами обладают и недостатками, целесообразно использовать их в производстве общественного питания в комбинации.

  • 2.9. Огнеупорные и теплоизоляционные материалы
  • 2.10. Материалы для нагревателей электрических печей
  • 3. Основное оборудование для охлаждения материалов и изделий
  • 3.1. Индексация оборудования для охлаждения
  • 3.2. Немеханизированные закалочные баки
  • 3.3. Механизированные закалочные баки
  • 3.4. Закалочные прессы и машины
  • 4. Дополнительное оборудование
  • Оборудование для правки
  • Оборудование для очистки
  • Травильные установки
  • Моечные машины, ультразвуковая очистка
  • Дробеструйные аппараты
  • 4.3. Оборудование для правки
  • 4.4. Оборудование для очистки
  • 5. Вспомогательное оборудование
  • 5.1. Классификация вспомогательного оборудования
  • 5.2. Оборудование для получения контролируемых атмосфер
  • 5.3. Средства механизации (подъемно-транспортное оборудование)
  • 6. Средства и системы автоматизации технологических процессов термической обработки деталей
  • 6.1. Задачи автоматизации
  • 6.2. Развитие средств автоматизации
  • 6.3. Устройства для измерения температуры
  • 6.4. Автоматические управляющие устройства в термических цехах
  • 6.5. Управляющие электронно-вычислительные машины в термических цехах
  • 7. Проектирование производства технологических процессов термической обработки
  • 7.1. Этапы проектирования, основные положения, принципы и задачи проектирования Классификация термических цехов
  • Задачи проектирования
  • Стадии проектирования
  • 7.2. Проектно - нормативная документация
  • 7.3. Понятие о единой системе технологической подготовки производства
  • 2. Выбор и расчет потребного количества оборудования.
  • 7.4. Автоматизация проектных работ
  • 8. Рекомендации по выбору режимов термической обработки заготовок из сталей различных групп и назначений
  • 8.1. Машиностроительные стали
  • 8.1.1. Форма и характерные размеры изделий
  • 8.1.2. Вид режима предварительной термообработки (отжига)
  • 8.1.3. Выбор режима отжига
  • 10. Рекомендации к термообработке инструментальных сталей, в том числе и быстрорежущих
  • 11. Технология термической обработки деталей машин и инструментов
  • 11.1. Общие положения проведения термической обработки
  • 11.1.1. Физические основы нагрева и охлаждения стали
  • 11.1.2. Характеристика процессов термической обработки стальных деталей и инструментов
  • 11.1.3. Закалочные среды
  • 11.1.4. Отпуск стальных изделий
  • Низкотемпературная обработка
  • Старение
  • 11.1.5. Процессы химико-термической обработки
  • 11.1.5.1. Цементация
  • 11.1.5.2. Азотирование
  • 11.1.5.3. Цианирование
  • 11.2. Принципиальные основы определения длительности термической обработки
  • 11.2.1. Влияние технологических факторов на режимы
  • Нагрева деталей
  • Нагрев деталей в печи с постоянной температурой
  • 11.2.2. Температурные напряжения и допускаемая скорость нагрева
  • 11.2.3. Длительность процесса при химико-термической обработке
  • 11.3. Расчетное определение параметров нагрева металла в печах
  • 11.3.1. Тонкие и массивные тела
  • 11.3.2. Расчет времени нагрева и охлаждения в среде с постоянной температурой
  • 11.3.3. Расчет нагрева и охлаждения в среде с постоянной температурой по вспомогательным графикам
  • 11.3.4. Расчет времени выдержки для выравнивания температуры
  • 11.3.5. Определение расчетных сечений для назначения времени выдержки при нагреве и охлаждении в процессе закалки, нормализации и отпуска. Типовые режимы термической обработки поковок
  • 11.3.6. Термическая обработка крупных деталей энергоагрегатов
  • 11.3.7. Технология термической обработки режущего инструмента
  • 11.3.7.1. Стали, применяемые для режущего инструмента
  • 11.3.7.2.Предварительная термическая обработка заготовок режущего инструмента
  • 11.3.7.3. Закалка инструмента
  • 11.3.7.4. Отпуск инструмента
  • 11.4. Практические рекомендации при проведении термической обработки
  • 11.4.1 Анализ элементов технологии термической обработки
  • 11.4.1.1. Элементы технологии термической обработки
  • 11.4.1.2. Скорость нагрева
  • 11.4.1.3. Длительность нагрева и охлаждения
  • 11.4.1.4.Некоторые практические рекомендации по назначению длительности времени выдержки
  • 11.4.2. Технологические среды. Назначение и классификация технологических сред
  • 11.4.2.1.Факторы, определяющие эффективность сред
  • 11.4.2.2. Характер теплообменных процессов
  • 11.4.2.3. Регулирование состава и количества среды
  • Приложение №1
  • 2. Рекомендации по проведению основной термической обработки
  • 3. Технология термической обработки.
  • Оборудование и автоматизация процессов тепловой обработки материалов и изделий
  • 2 Часть
  • 191186, Санкт-Петербург, ул. Миллионная, 5
  • 1. Классификация оборудования термических цехов

    Оборудование термических цехов делится на три группы: основное, дополнительное и вспомогательное.

    Основное оборудование применяется для выполнения операций термической обработки и включает печи, нагревательные установки, охлаждающие устройства (закалочные баки, закалочные машины, оборудование для обработки холодом и т.п.). Классификация основного оборудования термических цехов приведена на рис 1.1.

    Рис. 1.1. Классификация основного оборудования термических цехов

    К дополнительному оборудованию относится оборудование для правки и очистки деталей (правильные прессы, травильные ванны, пескоструйные и дробеструйные аппараты, моечные машины и т.д.). Классификация дополнительного оборудования термических цехов приведена на рис.1.2.

    Рис 1.2. Классификация дополнительного оборудования термических цехов

    Вспомогательное оборудование включает установки для приготовления карбюризатора и контролируемых атмосфер, устройства для охлаждения закалочных жидкостей, санитарно- техническое оборудование, мостовые и поворотные краны, монорельсы с электротельферами, рольганги, транспортеры, конвейеры и т.д. Классификация вспомогательного оборудования термических цехов приведена на рис. 1.3.

    Рис 1.3. Классификация вспомогательного оборудования термических цехов

    Печи и нагревательные установки классифицируют по технологическому назначению, по виду тепловой энергии, по способу и степени механизации, по использованию различных сред при нагреве.

    По технологическому назначению печи и нагревательные устройства делятся в зависимости от операций, для которых они предназначены, на отжигательные, закалочные, отпускные, цементационные и т.д.

    По виду применяемого топлива или тепловой энергии печи и нагревательные устройства работают на жидком, газообразном топливе и электроэнергии.

    По способу и степени механизации печи делятся на толкательные, конвейерные, карусельные, барабанные и другие. Эти печи могут иметь устройства для ручной загрузки и выгрузки изделий, для автоматической выгрузки и т.д.

    По использованию различных сред при нагреве печи и нагревательные устройства классифицируют на печи с контролируемыми атмосферами (нейтральными, науглероживающими), печи-ванны с расплавленными солями и металлами.

    2. Основное оборудование для нагрева материалов и изделий

    2.1. Индексация печей

    Первая буква индекса указывает на вид нагрева. Для электрических печей принята буква С (нагрев сопротивлением), для топливных печей – буква Т (термическая пламенная) или буква Н (нагревательная пламенная).

    Вторая буква индекса печей указывает основной конструктивный признак печи. Приняты следующие основные обозначения: Н – печь с неподвижным подом; Д – печь с выдвижным подом; Ш – шахтная (круглая); Л – туннельная; Г – колпаковая; Э – элеваторная (печь с подъемным подом); Т – толкательная;

    К – печь с конвейерным подом; Е – печь с подвесным конвейером; Р – печь с рольганговым подом; Ю – печь с шагающим подом; И – печь с пульсирующим подом; Б – барабанная; А – карусельная (с вращающимся подом или сводом);

    Я - ямная печь; Щ – щелевая печь; У – методическая (кузнечная).

    В (ванна) – вторая буква индекса для печей-ванн и электродно- соляных ванн.

    Третья буква индекса печей указывает на характер среды в рабочем пространстве. Для электропечей сопротивления приняты следующие обозначения атмосфер: О – окислительная; З – защитная; В – вакуум; Н – водородная; А – азотная.

    Третья буква индекса для печей-ванн обозначается: М – масло; Г – расплав металла, соли или щелочи, а для топливных печей – указывает характер среды в рабочем пространстве: О – окислительная (то есть обычная печная); З – искусственная (защитная, безокислительная, для цементации и др.).

    Четвертая буква индекса указывает отдельные характерные особенности печи. Приняты следующие обозначения: А – печь входит в агрегат, то есть может агрегироваться с закалочным баком и другим оборудованием; В – вертикальное расположение печи (в печах круглого сечения) или вертикальное перемещение изделий (в механизированных печах); Ж – под печи желобчатый; К – колодцевая печь (периодического действия) или кольцевой под (в печах с вращающимся подом); Т – тарельчатый под (в печах с вращающимся подом); М – печь механизирована; Н – печь непрерывного действия (барабанная); П – печь периодического действия (барабанная).

    Цифры, стоящие после букв через дефис, указывают размеры (в дециметрах) рабочего пространства печи (или размеры муфеля, реторты).

    Для печей с прямоугольным сечением рабочей камеры первая цифра указывает ширину пода, вторая – длину пода, третья – высоту камеры (или загрузочного окна, если высота окна меньше высоты камеры печи).

    Для печей круглого сечения (шахтных, колодцевых и др.) первая цифра указывает диаметр камеры, вторая – длину камеры.

    Для печей с вращающимся подом первая цифра указывает внешний диаметр пода, вторая – внутренний диаметр пода, третья – ширину пода.

    Цифры, указывающие размеры камеры пода, окна и реторты разделены между собой точками.

    Предельная температура печи (в сотнях градусов Цельсия) приводится в знаменателе (через косую черту).

    Для топливных печей рядом с цифрой, указывающей температуру печи, через дефис ставится буква, указывающая вид топлива: Г – природный или другой газ; М – мазут или другое жидкое топливо, например, индекс печи.

    СКЗ-12.70.01/7 читается так: печь электрическая, с конвейерным подом, с защитной атмосферой, ширина пода 12 дм, длина пода 70 дм, высота камеры 1 дм, предельная температура 700 °С.

    Индекс печи ТТЗА-8.72.8,5/9,5-Г читается следующим образом: печь топливная, толкательная, с защитной атмосферой, агрегируемая, ширина пода 8 дм, длина пода 72 дм, высота камеры 8,5 дм, предельная температура 950 °С, на газовом топливе.

      Основы тепловой обработки пищевых продуктов

      Классификация тепловых аппаратов и их структура

      Источники теплоты и теплоносители

      Теплогенерирующие устройства

      Варочное тепловое оборудование

      Жарочные тепловые аппараты

      Эксплуатация теплового оборудования

    1. Основы тепловой обработки пищевых продуктов

    При тепловой обработке изменяются структурно-механические, физико-химические и органолептические свойства продукта, определяющие степень кулинарной готовности. Нагревание вызывает в продукте изменения белков, жиров, углеводов, витаминов и минеральных веществ.

    Основными приемами тепловой обработки пищевых продуктов являются варка и жаренье, применяемые как самостоятельные процессы, так и в различных комбинациях. Каждый из приемов имеет несколько разновидностей (варка в среде пара, жарка во фритюре и т.д.). Для реализации этих приемов в тепловом оборудовании используют различные способы нагрева продуктов: поверхностный, объемный, комбинированный. При всех способах нагрева пищевых продуктов внешний теплообмен сопровождается массопереносом, в результате которого часть влаги продуктов переходит во внешнюю среду. При тепловой обработке продуктов в жидких средах вместе с влагой также теряется часть сухих веществ.

    Практически все пищевые продукты являются капиллярно-пористыми телами, в капиллярах которых жидкость удерживается силами поверхностного натяжения. При нагревании продуктов эта жидкость начинает мигрировать (перемещаться) от нагретых слоев к более холодным.

    При жаренье продуктов влага из поверхностных слоев частично испаряется, а частично перемещается вглубь к более холодным участкам, что приводит к образованию сухой корочки, в которой происходит термический распад органических веществ (при температуре более 100 °С). Чем быстрее нагревается поверхность, тем интенсивнее происходит перенос тепла и влаги и тем быстрее образуется поверхностная корочка.

    Поверхностный нагрев продукта осуществляется теплопроводностью и конвекцией при подводе теплоты к центру продукта через его наружную поверхность. При этом нагрев центральной части продукта и доведение его до кулинарной готовности происходят в основном за счет теплопроводности.

    Интенсивность теплообмена зависит от геометрической формы, размеров и физических параметров обрабатываемого продукта, режима движения (продукта и среды), температуры и физических параметров греющей среды. Продолжительность процесса тепловой обработки при поверхностном нагреве обусловлена низкой теплопроводностью большинства пищевых продуктов.

    Объемный способ подвода тепла к обрабатываемому продукту реализуется в аппаратах с инфракрасным (ИК), сверхвысокочастотным (СВЧ), электроконтактным (ЭК) и индукционным нагревом.

    Инфракрасное излучение преобразуется в объеме обрабатываемого продукта в теплоту без непосредственного контакта между источником ИК-энергии (генератором) и самим изделием. Носителями ИК-энергии являются электромагнитные колебания переменного электромагнитного поля, возникающие в продукте.

    Инфракрасная энергия в обрабатываемом продукте образуется при переходе электронов с одних энергетических уровней на другие, а также при колебательном и вращательном движениях атомов и молекул. Переходы электронов, движение атомов и молекул происходят при любой температуре, но с ее повышением интенсивность ИК-излучения увеличивается.

    СВЧ-нагрев пищевых продуктов осуществляется за счет преобразования энергии переменного электромагнитного поля сверхвысокой частоты в тепловую энергию, генерируемую по всему объему продукта. СВЧ-поле способно проникать в обрабатываемый продукт на значительную глубину и осуществлять его объемный нагрев независимо от теплопроводности, т.е. применяться для продуктов с различной влажностью. Высокая скорость и высокий коэффициент полезного действия нагрева делают его одним из самых эффективных способов доведения пищевых продуктов до кулинарной готовности.

    СВЧ-нагрев называют диэлектрическим из-за того, что большинство пищевых продуктов плохо проводят электрический ток (диэлектрики). Другие его названия - микроволновый, объемный - подчеркивают короткую длину волны электромагнитного поля и сущность тепловой обработки продукта, происходящей по всему объему.

    Эффект разогрева пищевых продуктов в СВЧ-поле связан с их диэлектрическими свойствами, которые определяются поведением в таком поле связанных зарядов. Смещение связанных зарядов под действием внешнего электрического поля называется поляризацией. Наибольшие затраты энергии внешнего электрического поля связаны с дипольной поляризацией, которая возникает в результате воздействия электромагнитного поля на полярные молекулы, обладающие собственным ди-польным моментом. Примером полярной молекулы является молекула воды. При отсутствии внешнего поля дипольные моменты молекул имеют произвольные направления. В электрическом поле на полярные молекулы действуют силы, стремящиеся повернуть их таким образом, чтобы дипольные моменты молекул совпадали. Поляризация диэлектрика состоит в том, что его диполи устанавливаются в направлении электрического поля.

    Электроконтактный нагрев обеспечивает быстрое повышение температуры продукта по всему объему до требуемой величины за 15-60 с за счет пропускания через него электрического тока. Способ применяется в пищевой промышленности для прогревания тестовых заготовок при выпечке хлеба, при бланшировании мясопродуктов. Продукция, подвергаемая нагреванию, располагается между электрическими контактами. Зазоры между поверхностью продукции и контактов могут вызвать «ожог» поверхности.

    Индукционный нагрев применяется в современных индукционных бытовых плитах и на предприятиях общественного питания. Индукционный нагрев токопроводящих материалов, к которым относится большинство металлов для наплитной посуды, возникает при их помещении во внешнее переменное магнитное поле, создаваемое индуктором. Индуктор, установленный под настилом плиты, создает вихревые токи, замыкающиеся в объеме посуды. Продукт обрабатывают в специальной металлической наплитной посуде, которая нагревается практически мгновенно из-за направленного действия электромагнитного поля. При этом потери тепла в окружающую среду сведены до минимума, что сокращает затраты энергии на приготовление блюда по сравнению с обычной электрической плитой на 40 %. В таких тепловых аппаратах настил плиты, как правило, изготовляется из керамических материалов и при тепловой обработке остается практически холодным.

    Комбинированные способы нагрева пищевых продуктов - это последовательный или параллельный нагрев продукции несколькими из известных способов с целью сокращения времени тепловой обработки, повышения качества конечного продукта и эффективности технологического процесса. Так, комбинированная тепловая обработка продуктов в СВЧ-поле и ИК-лучами позволяет реализовать преимущества обоих способов нагрева и получать изделия с поджаристой хрустящей корочкой.

    mob_info