Второй закон менделя называют законом. Каталог файлов по биологии. Менделирующие признаки человека

В 50-60-х годах XIX века австрийский биолог и монах Грегор Мендель проводил опыты по скрещиванию гороха. В результате статистической обработки данных Мендель не только установил, но и смог объяснить ряд генетических закономерностей. Это при том, что в то время ничего не знали о ДНК и генах как носителях наследственной информации. Грегора Менделя считают отцом генетики.

Еще до Менделя ряд ученых в начале XIX века отмечали, что у гибридов некоторых растений проявляется признак только одного родителя. Но только Мендель догадался исследовать статистические соотношения гибридов в ряду нескольких поколений. Кроме того ему повезло с выбором объекта для экспериментов - гороха посевного. Мендель изучал семь признаков этого растения, и почти все они наследовались, как находящиеся в разных хромосомах и наблюдалось полное доминирование. Если бы нашлись сцепленные признаки, а также наследуемые по типу неполного доминирования или кодоминирования и др., то это бы внесло путаницу в исследования ученого.

Установленные Менделем закономерности наследования сейчас называют первым, вторым и третьим законами Менделя. Первый закон Менделя - это закон единообразия гибридов первого поколения.

Мендель проводил моногибридное скрещивание. Он брал чистые линии, различающиеся только по одной альтернативной паре признаков. Например, растения с желтыми и зелеными семенами (или гладкими и морщинистыми, или высоким и низким стеблем, или пазушными и верхушечными цветками и др.) Проводил перекрестное опыление чистых линий и получал гибриды первого поколения. (Обозначение поколений F 1 , F 2 ввели в начале XX века.) У всех гибридов F 1 наблюдался признак только одного из родителей. Этот признак Мендель назвал доминантным. Другими словами, все гибриды первого поколения были единообразны.

Второй, рецессивный, признак в первом поколении исчезал. Однако он проявлялся во втором поколении. И это требовало какого-то объяснения.

Опираясь на результаты двух скрещиваний (F 1 и F 2), Мендель понял, что за каждый признак у растений отвечают два фактора. У чистых линий они были также парны, но одинаковы по своей сути. Гибриды первого поколения получали по одному фактору от каждого из родителей. Эти факторы не сливались, а сохраняли обособленность друг от друга, но проявится мог только один (который оказывался доминантным).

Первый закон Менделя не всегда формулируют как закон единообразия гибридов первого поколения. Встречается и подобная формулировка: п ризнаки организма определяются парами факторов, а в гаметах по одному фактору на каждый признак . (Эти «факторы» Менделя в настоящее время называют генами.) Действительно, важный вывод, который можно было сделать из опытов Менделя - это то, что организмы содержат по два носителя информации о каждом признаки, передают через гаметы потомкам по одному фактору, и в организме факторы, обуславливавшие один и тот же признак, не смешиваются между собой.

Более глубокое генетическое, а также цитологическое и молекулярное объяснение законы Менделя получили позднее. Были выявлены исключения из законов, которые также были объяснены.

Чистые линии - это гомозиготы. У них исследуемая пара аллелей одинакова (например, AA или aa). Выступая в качестве родителя (P) одно растение образует гаметы, содержащие только ген A, а другое - только ген a. Получившиеся от их скрещивания гибриды первого поколения (F 1) являются гетерозиготами, так как имеют генотип Aa, который при полном доминировании фенотипически проявляется также как гомозиготный генотип AA. Именно эту закономерность описывает первый закон Менделя.

На схеме ниже w - ген, отвечающий за белый цвет цветка, R - за красный (данный признак доминантный). Черными линиями обозначены разные варианты встречи гамет. Все они равновероятны. (Такая «прорисовка» встречи гамет будет важна при объяснении второго закона Менделя.) В любом случае (при любой встрече родительских гамет) у гибридов первого поколения формируются одинаковые генотипы - Rw.

Усовершенствование гибридиологического метода позволило Г. Менделю выявить ряд важнейших закономерностей наследования признаков у гороха, которые, как оказалось впоследствии, справедливы для всех диплоидных организмов, размножающихся половым путем.

Описывая результаты скрещиваний, сам Мендель не интерпретировал установленные им факты как некие законы. Но после их переоткрытия и подтверждения на растительных и животных объектах, эти повторяющиеся при определенных условиях явления стали называть законами наследования признаков у гибридов.

Некоторые исследователи выделяют не три, а два закона Менделя. При этом некоторые ученые объединяют первый и второй законы, считая, что первый закон является частью второго и описывает генотипы и фенотипы потомков первого поколения (F1). Другие исследователи объединяют в один второй и третий законы, полагая, что «закон независимого комбинирования» есть в сущности «закон независимости расщепления», протекающего одновременно по разным парам аллелей. Однако в отечественной литературе речь идет о трех законах Менделя.

Крупная научная удача Менделя состояла в том, что выбранные им семь признаков определялись генами на разных хромосомах, что исключало возможное сцепленное наследование. Он обнаружил, что:

1) У гибридов первого поколения присутствует признак только одной родительской формы, а другой «исчезает». Это закон единообразия гибридов первого поколения.

2) Во втором поколении наблюдается расщепление: три четверти потомков имеют признак гибридов первого поколения, а четверть - «исчезнувший» в первом поколении признак. Это закон расщепления.

3) Каждая пара признаков наследуется независимо от другой пары. Это закон независимого наследования.

Разумеется, Мендель не знал, что эти положения со временем назовут первым, вторым и третьим законами Менделя.

Современная формулировка законов

Первый закон Менделя

Закон единообразия гибридов первого поколения -- при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака -- на современном языке это означает гомозиготность особей по этому признаку.

Второй закон Менделя

Закон расщепления -- при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть -- рецессивный, называется расщеплением. Следовательно, расщепление -- это распределение (рекомбинация) доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Расщепление потомства при скрещивании гетерозиготных особей объясняется тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена. Цитологическая основа расщепления признаков -- расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе (рис.4).

Рис.4.

Пример иллюстрирует скрещивание растений с гладкими и морщинистыми семенами. Изображены только две пары хромосом, в одной из этих пар находится ген, ответственный за форму семян. У растений с гладкими семенами мейоз приводит к образованию гамет с аллелем гладкости (R), а у растений с морщинистыми семенами - гамет с аллелем морщинистости (r). Гибриды первого поколения F1 имеют одну хромосому с аллелем гладкости и одну - с аллелем морщинистости. Мейоз в F1 приводит к образованию в равном числе гамет с R и с r. Случайное попарное объединение этих гамет при оплодотворении приводит в поколении F2 к появлению особей с гладкими и морщинистыми горошинами в отношении 3:1.

Третий закон Менделя

Закон независимого наследования -- при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Менделеевский закон независимого наследования можно объяснить перемещением хромосом во время мейоза (рис.5). При образовании гамет распределение между ними аллелей из данной пары гомологичных хромосом происходит независимо от распределения аллелей из других пар. Именно случайное расположение гомологичных хромосом на экваторе веретена в метафазе I мейоза и их последующее расположение в анафазе I ведет к разнообразию рекомбинаций аллелей в гаметах. Число возможных сочетаний аллелей в мужских или женских гаметах можно определить по общей формуле 2n , где n - гаплоидное число хромосом. У человека n=23, а возможное число различных сочетаний составляет 223=8 388 608.


Рис.5. Объяснение менделевского закона независимого распределения факторов (аллелей) R, r, Y, y как результата независимого расхождения разных пар гомологичных хромосом в мейозе. Скрещивание растений, отличающихся по форме и цвету семян (гладкие желтые Ч зеленые морщинистые), дает гибридные растения, у которых в хромосомах одной гомологичной пары содержатся аллели R и r, а другой гомологичной пары - аллели Y и y. В метафазе I мейоза хромосомы, полученные от каждого из родителей, могут с равной вероятностью отходить либо к одному и тому же полюсу веретена (левый рисунок), либо к разным (правый рисунок). В первом случае возникают гаметы, содержащие те же комбинации генов (YR и yr), что и у родителей, во втором случае - альтернативные сочетания генов (Yr и yR). В результате с вероятностью 1/4образуются четыре типа гамет, случайная комбинация этих типов приводит к расщеплению потомства 9:3:3:1, как это и наблюдалось Менделем.

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным , двух пар — дигибридным , нескольких пар — полигибридным . Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак — цвет горошин, альтернативные признаки — желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический — составление и анализ родословных; цитогенетический — изучение хромосом; близнецовый — изучение близнецов; популяционно-статистический метод — изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р — родители; F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F 1 — гибриды первого поколения — прямые потомки родителей, F 2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F 1); × — значок скрещивания; G — мужская особь; E — женская особь; A — доминантный ген, а — рецессивный ген; АА — гомозигота по доминанте, аа — гомозигота по рецессиву, Аа — гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.

При моногибридном скрещивании гомозиготных особей , имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин)

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением . Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин):

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F 1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую — а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого — с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А , другая половина — ген а . Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а ), 1/4 — гомозиготы по доминантному признаку (несут два гена А ) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А ) и гладкая форма (В ) семян — доминантные признаки, зеленая окраска (а ) и морщинистая форма (b ) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F 1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀АABB
желтые, гладкие
× ♂aаbb
зеленые, морщинистые
Типы гамет AB ab
F 1 AaBb
желтые, гладкие, 100%
P ♀АaBb
желтые, гладкие
× ♂AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F 2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1), то при дигибридном образуется 9 разных генотипов — 3 2 , при тригибридном скрещивании образуется 3 3 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а — с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

    Перейти к лекции №16 «Онтогенез многоклеточных животных, размножающихся половым способом»

    Перейти к лекции №18 «Сцепленное наследование»

Генетика — наука о наследственности и изменчивости живыхорганизмов . Как наука генетика существует с 1900 г., когда несколькими учеными (X.Де Фриз, К. Корренс, Э. Чермак) независимо друг от друга были переоткрыты закономерности наследования родительских признаков, которые экспериментально установил еще в 1865 г. чешский естествоиспытатель Г.Мендель. На основе проведенного статистического анализа результатов скрещиваний гороха с разными признаками он сформулировал несколькоправил, которые впоследствии получили название законов Менделя. Тогда же вспомнили о работах В. Ру, О. Гертвига, Э. Страсбургера, А. Вейсмана, в которых была сформулирована «ядерная гипотеза» наследования признаков, ставшая в будущем основой хромосомной теории наследственности (Т. Морган и др.). Названиенауки «генетика» предложил в 1906 г. английский биолог У. Бэтсон.

Селекция — наука о методах создания сортов, гибридов растений и пород животных, штаммов микроорганизмов с нужнымичеловеку признаками.

Породой и сортом называют популяцию растений или животных, созданную человеком для удовлетворениясвоих потребностей; они характеризуются специфическим генофондом, наследственно закрепленными признаками. У микроорганизмов чистую культуру называют штаммом. Иногда они бываютчистыми линиями — генотипически однородным потомством,полученным за счет самооплодотворения.

Теоретической основойселекции является генетика.

Методы селекционной работы — отбор, гибридизация, полиплоидия, мутагенез.

Г.Мендель

Иоганн Грегор Мендель (1822 —1884) — аббат монастыря в Брно Чехия) по праву считается основателем генетики. В результатеопытов над горохом он сформулировал законы наследственности, разработал концепцию доминантных и рецессивных генов.

Г. Мендель является основоположником гибридологического анализа, изложенного им в фундаментальном труде «Опыты над растительными гибридами» (1866).

В опытах над горохом Г. Мендель использовал гибридологический метод, суть которого заключается в получении гибридов (потомков от скрещивания организмов) и их сравнительном анализе в ряду поколений. Для эксперимента ученый использовалчистые линии (термин введен позже, в 1903 г.) такихрастений гороха, в потомстве которых при самоопылении не было различий по анализируемому признаку. Другими словами, получалось генотипически однородное потомство. Г. Мендель, как правило, использовал контрастирующие признаки: гладкая поверхность семян и морщинистые горошины, растения высокие и низкие, белая и розовая окраска венчика и т.п.

Первый закон Менделя — закон единообразия гибридов первого поколения.

Своиопыты Г. Мендель начал с того, что скрещивал сорта гороха, которые различались лишь по одной паре альтернативных (наиболееконтрастирующих) признаков. Такое скрещивание называется моногибридным. Для первого эксперимента естествоиспытатель выбралсорта гороха, различающиеся по цвету семян: желтые и зеленые.

Поскольку горох является самоопыляющимся растением, то у растений одного сорта все семена были зелеными, у другого — только желтые. В первой серии опытов все остальные признаки растения во внимание не принимались и при анализе не учитывались.

Г. Мендель провел искусственное перекрестное опыление и скрестил сорта, различающиеся по цвету семян. Была выявлена интересная закономерность: к какому бы сорту не принадлежало материнское растение (с желтыми или с зелеными семенами), семенагибридного растения оказывались только желтыми. Во второй серии опытов ученый использовал сорта гороха, различающиеся потекстуре поверхности семян: гладкие и морщинистые. И здесь получилась сходная картина: при любых вариантах скрещивания угибридных растений семена были только гладкими.

Мендель сделал вывод, что у гибридов первого поколения проявляются признаки только одного из родителей. Такие признакибыли названы доминантными, а непроявляющиеся признаки — рецессивными. Обнаруженная закономерность была сформулирована какединообразие гибридов первого поколения. В опытах Менделя в результате скрещивания различных сортов гороха было обнаружено полное доминирование, когда гибридные растения имели фенотип (совокупность внешних признаков) только одного из родителей.

Доминантные аллели принято обозначать прописными буквами:

например, А (желтые семена), В (гладкие семена).

Рецессивные аллели обозначаютстрочными буквами: например, а (зеленые семена), b (морщинистые семена). Следовательно, схематически любая гомозиготная особь обозначается как АА, аа,ВB bb и т.п.

Гетерозиготные особи — Аа, ВЬ и т.п.

Гибриды различных поколений принято обозначать F 1 (первое поколение),

F 2 (второе поколение) и т.д.

Родителей обозначают Р, материнскую особь — (зеркало Венеры), отцовскую особь — (щит и копье Марса). Знак скрещивания форм — х.

Более поздние исследования показали, что иногда наблюдается неполное доминирование, когда гибриды обладают промежуточным фенотипом. Так, при скрещивании растений ночной красавицы с красными цветками с растениями, имеющимибелые цветки, все гибриды первого поколения имеют розовыецветки.

Элементарными единицами наследственности являются гены .Существование каких-то дискретных наследственных факторов вполовых клетках было предположительно высказано Г. Менделемеще в 1865 г. В 1909 г. датский биолог Вильгельм Иогансен назвалдискретные наследственные факторы генами. Теперь стало известно, что ген представляет собой участок молекулы ДНК.

Совокупность генов организма называют генотипом.

Генотип и внешняясреда определяют и формируют фенотип организма — совокупность морфологических, физиологических, поведенческих и др. признаков и свойств организма.

Совокупность всех генов гаплоидногохромосом называют геномом.

Гены, определяющие развитие альтернативных признаков ирасположенные в идентичных участках гомологичных хромосом,т.е. парные гены, называют аллелями, или аллельными генами. Придиплоидном наборе хромосом в любой клетке животного или рас-тения всегда имеется по два аллеля любого гена. В половых клетках (гаметах) в результате мейоза содержится только гаплоидный набор хромосом (п) и только по одному аллелю.

При слиянии двух родительских гамет образуется клетка с диплоидным набором хромосом (2 n ) — зигота. Если у образовавшейся зиготы гомологичные хромосомы несут идентичные аллели, то это гомозигота. Этот термин был введен генетиком У. Бэтсоном в 1902 г.

Под гомозиготностью понимают наследственно однородные организмы, в потомстве которых не происходит расщепления признаков.

Горох, как самоопыляемое растение, гомозиготен.

В отличие от гомозиготы, у гетерозиготы в гомологичныххромосомах локализованы разные аллели каждого гена, отвечающие за альтернативные признаки: например, горох с гладкими иморщинистыми семенами. Потомства гетерозиготных особей проявляют разные признаки. Как правило, гетерозиготные особи наиболее жизнеспособны.


Второй закон Менделя — расщепление признаков у гибридов второго поколения.

Из гибридных семян гороха были выращены растения, которые затем были размножены естественным для гороха способом — путем самоопыления и таким образом получены семена второго поколения, не только желтые, но и зеленые. Соотношение желтых и зеленых семян в собранном урожае составило 6022: 2001 соответственно, т.е. 3:1. Следовательно, при скрещивании гибридов первого поколения между собой во втором поколении произошло расщепление признаков по фенотипу 3:1. Аналогичные результаты были получены по паре признаков «гладкие и морщинистые семена», «пурпурная и белая окраска венчика». Данные экспериментов свидетельствовали о том, что у гибридов второго поколения проявляется рецессивный признак, скрытый в первом поколении.

Схему образования зигот второго поколения можно представить следующим образом. Из полученной последовательности зигот F2(АА, Аа, Аа, аа, или АА, 2Аа, аа) видно, чтосоотношение 3:1 по фенотипу объясняется тем, что в гомозиготеАА представлен только доминантный аллель А, отвечающий зажелтый цвет семян, в гетерозиготах Аа доминирует аллель А иподавляет проявление рецессивного (а) фенотипа, т.е. зеленогоцвета семян. Только в зиготе аа в фенотипе проявляется рецессивный признак — зеленый цвет семян. И совершенно очевидно,что соотношение по генотипу соответствует соотношению 1:2:1(АА:2Аа:аа).

Второй закон Менделя, или закон расщепления, формулируется следующим образом: при скрещивании гибридов первого поколения между собой во втором поколении наблюдается расщепление всоотношении 3:1 по фенотипу и 1:2:1 по генотипу.

У растения ночная красавица при скрещивании гибридов первогопоколения (F)) получены гибриды второго поколения (F2), дающие расщепление и по фенотипу, и по генотипу 1:2:1.Следовательно, при неполном доминировании в потомстве F2расщепление по фенотипу и генотипу совпадает (1:2:1).

Правило, или принцип, чистоты гамет. Для того чтобы объяснить явление расщепления у гибридов второго поколения, Г. Мендель предложил гипотезу чистоты гамет. Через гаметы при половом размножении организмов осуществляется связь между поколениями. Через гаметы передаются материальные наследственные факторы — гены, определяющие и контролирующие тотили иной признак или свойство организма. Гаметы генетическичисты, т.е. несут только один ген из аллельной пары (например,А или а). В зиготе, образующейся при слиянии гамет, присутствует пара аллелей того или иного гена. Так, гетерозиготная формаАа содержит доминантный (А) и рецессивный (а) аллели. Гаметы, участвующие в образовании гетерозиготы Аа, содержат только по одному аллелю: А и а. Слияние гамет и образование гетерозиготы можно записать как: А х а =Аа. В зиготе аллели не смешиваются и ведут себя как независимые единицы. Согласно гипотезе чистоты гамет, у гетерозиготной особи Аа будут с одинаковойвероятностью формироваться гаметы с геном А и гаметы с генома, а гомозиготные особи АА или аа будут давать гаметы А и а,соответственно.

Таким образом, гетерозиготные организмы дают различающиеся по аллелям гаметы и поэтому в их потомстве наблюдается расщепление. Гомозиготные особи образуют один вид гамет и поэтому при самоопылении не дают расщепления.

В настоящее время благодаря исследованиям митоза, мейозагипотеза чистоты гамет, предложенная Г. Менделем, получила неоспоримое цитологическое подтверждение.


Дигибридное скрещивание. Третий закон Менделя .

С помощьюмоногибридного скрещивания Г. Мендель установил закономерности наследования одного отдельно взятого признака. В природных условиях могут скрещиваться особи, различающиеся по двуми более признакам. Для таких более сложных случаев существуютсвои закономерности наследования признаков.Вслед за опытами по моногибридному скрещиванию Мендельстал исследовать наследование признаков, за которые отвечаютуже две пары аллелей. В частности, ученый наблюдал наследованиене только окраски семян гороха (желтые — А, зеленые — а), но иодновременно с этим характер их поверхности (гладкая — В, морщинистая — Ь). Скрещивание особей, отличающихся по двум парам аллелей, называется дигибридным скрещиванием.

Одна пара аллелей (Аа) контролирует окраску семян, другая пара (ВЬ) — характер их поверхности.В рассматриваемой серии опытов Г. Мендель скрещивал растения гороха, с одной стороны, с желтыми (А), гладкими (В) семенами, с другой стороны — с зелеными (а) и морщинистыми семенами (Ь). В первом поколении все гибриды, как и ожидалось,имели желтые гладкие семена. Во втором поколении произошлонезависимое расщепление признаков — согласно гипотезе чистоты гамет, аллельные гены ведут себя как независимые, цельныеединицы. Было получено: 315 желтых гладких семян (генотипы:ААВВ,АаВЬ, АаВВ, ААВЬ), 108 — зеленых гладких (ааВВ, ааВЬ), 101 —желтых морщинистых (AAbb, Aabb), 32 — зеленых морщинистых(aabb). В целом расщепление по фенотипу дало 4 группы особей: сжелтыми гладкими семенами — 9, с желтыми морщинистымисеменами — 3, с зелеными гладкими семенами — 3, с зеленымиморщинистыми семенами — 1. Более кратко это можно записатькак 9 AB :3 Ab :3 aB : lab .

Доминирование по рассматриваемым признакам определяется доминантными аллелями А и В, наличие которых и обусловливает соответствующий фенотип. По этой причине различныегенотипы могут дать один и тот же фенотип. Например, растения с желтыми гладкими семенами (один фенотип) образованы четырьмя различными генотипами (гомозигота ААВВ, гетерозигота по обоим парам аллелей АаВЬ, гетерозигота по признакуокраски семян АаВВ, гетерозигота по признаку поверхности семянААВЬ). Растения с зелеными морщинистыми семенами могут бытьполучены лишь при соединении рецессивных аллелей в гомозиготе (aabb), т.е. такие растения всегда гомозиготны. Полученныепри дигибридном скрещивании количественные соотношениямежду числом фенотипов и генотипов во втором поколении справедливы для аллелей с полным доминированием. При промежуточном характере наследования число фенотипов будет значительно больше. При неполном доминировании по обоим рассматриваемым признакам число фенотипов и генотипов равно междусобой.

Результаты проведенных экспериментов показаны в таблице, известной под названием решетки Пеннета, названной так по имени английского генетика Реджиналда Пеннета(1875— 1967). С помощью решетки Пеннета легко установить всевозможные сочетания мужских и женских гамет. Гаметы родителейуказываются по верхнему и левому краям решетки, а в ячейкирешетки вписываются генотипы зигот, образовавшихся при слиянии гамет. Установлено, что при дигибридном скрещивании, также как и при моногибридном скрещивании, каждая пара аллелейведет себя независимо от другой пары.

Третий закон Менделя, или закон независимого комбинирования (наследования) признаков, формулируется следующимобразом: расщепление по каждой паре генов идет независимо отдругой пары генов. Из этого следует, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг отдруга. Среди потомков второго поколения появляются особи сновыми (по отношению к родительским) комбинациями признаков.

Статистический характер законов Г.Менделя.

В опытах с горохом при моногибридном скрещивании Г.Мендель получил соотношение по изучаемому признаку 3,0095:1,0, т.е. близкое к теоретически ожидаемому 3:1. Ученый оперировал сравнительно крупными числами (им было проанализировано более 8 тыс. семян),поэтому его результат был близок к расчетному. Более или менееточное выполнение соотношения 9:3:3:1 при дигибридном скрещивании также возможно лишь при анализе большого фактического материала. В частности, Г. Менделем было получено соотношение 9,84:3,38:3,16:1,0. Результаты такого анализа не свидетельствуют о невыполнении законов Менделя. Законы генетикиносят статистический характер. Из этого следует, что чем большматериала по расщеплению признаков будет рассмотрено и проанализировано, тем точнее будут выполняться данные статистические закономерности.

При локализации генов в половых хромосомах или в ДНК пластид, митохондрий и других органоидов, результаты скрещиваниймогут не следовать законам Менделя.

МЕНДЕЛЯ ЗАКОНЫ МЕНДЕЛЯ ЗАКОНЫ

установленные Г. Менделем закономерности распределения в потомстве наследств, признаков. Основой для формулировки М. з. послужили многолетние (1856-63) опыты по скрещиванию неск. сортов гороха. Современники Г. Менделя не смогли оценить важности сделанных им выводов (его работа была доложена в 1865 и вышла в свет в 1866), и лишь в 1900 эти закономерности были переоткрыты и правильно оценены независимо друг от друга К. Корренсом, Э. Чермаком и X. Де Фризом. Выявлению этих закономерностей способствовало применение строгих методов подбора исходного материала, спец. схемы скрещиваний и учёта результатов экспериментов. Признание справедливости и значения М. з. в нач. 20 в. связано с определ. успехами цитологии и формированием ядерной гипотезы наследственности. Механизмы, лежащие в основе М. з., были выяснены благодаря изучению образования половых клеток, в частности поведения хромосом в мейозе, и доказательству хромосомной теории наследственности.

Закон единообразия гибридов первого поколения, или первый закон Менделя, утверждает, что потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип по этому признаку. При этом все гибриды могут иметь фенотип одного из родителей (полное доминирование), как это имело место в опытах Менделя, или, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения могут проявить признаки обоих родителей (кодоминировапие). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и аа) все их потомки одинаковы по генотипу (гетерозиготны - Аа), а значит, и по фенотипу.

Закон расщепления , или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определ. соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения. Так, в случае полного доминирования выявляются 75% особей с доминантным и 25% с рецессивным признаком, т. е. два фенотипа в отношении 3:1 (рис. 1). При неполном доминировании и кодомииировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% - фенотипы исходных родительских форм, т. е. наблюдают расщепление 1:2:1. В основе второго закона лежит закономерное поведение пары гомологичных хромосом (с аллелями А и а), к-рое обеспечивает образование у гибридов первого поколения гамет двух типов, в результате чего среди гибридов второго поколения выявляются особи трёх возможных генотипов в соотношении 1АА:2Аа:1аа. Конкретные типы взаимодействия аллелей и дают расшепления по фенотипу в соответствии со вторым законом Менделя.

Закон независимого комбинирования (наследования) признаков , или третий закон Менделя, утверждает, что каждая пара альтернативных признаков ведёт себя в ряду поколений независимо друг от друга, в результате чего среди потомков второго поколения в определ. соотношении появляются особи с новыми (по отношению к родительским) комбинациями признаков. Напр., при скрещивании исходных форм, различающихся по двум признакам, во втором поколении выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1 (случай полного доминирования). При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два - новые. Этот закон основан на независимом поведении (расщеплении) неск. пар гомологичных хромосом (рис. 2). Напр., при дигибридном скрещивании это приводит к образованию у гибридов первого поколения 4 типов гамет (АВ, Ab, aB, ab) и после образования зигот - закономерному расщеплению по генотипу и соответственно по фенотипу.

Как один из М. з. в генетич. лит-ре часто упоминают закон чистоты гамет. Однако, несмотря на фундаментальность этого закона (что подтверждают результаты тетрадного анализа), он не касается наследования признаков и, кроме того, сформулирован не Менделем, а У. Бэтсоном (в 1902).

Для выявления М. з. в их классич. форме необходимы: гомозиготность исходных форм, образование у гибридов гамет всех возможных типов в равных соотношениях, что обеспечивается правильным течением мейоза; одинаковая жизнеспособность гамет всех типов, равная вероятность встречи любых типов гамет при оплодотворении; одинаковая жизнеспособность зигот всех типов. Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении, либо к искажению соотношения разл. гено- и фенотипов. М. з., вскрывшие дискретную, корпускулярную природу наследственности, имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. Для полиплоидов выявляют принципиально те же закономерности наследования, однако числовые соотношения гено- и фенотипич. классов отличаются от таковых у диплоидов. Соотношение классов изменяется и у диплоидов в случае сцепления генов («нарушение» третьего закона Менделя). В целом М. з. справедливы для аутосомпых генов с полной пенетрантностью и постоянной экспрессивностью. При локализации генов в половых хромосомах или в ДНК органоидов (пластиды, митохондрии) результаты реципроксных скрещиваний могут различаться и не следовать М. з., чего не наблюдается для генов, расположенных в аутосомах. М. з. имели важное значение - именно на их основе происходило интенсивное развитие генетики на первом этапе. Они послужили основой для предположения о существовании в клетках (гаметах) наследств, факторов, контролирующих развитие признаков. Из М. з. следует, что эти факторы (гены) относительно постоянны, хотя и могут находиться в разл. состояниях, парны в соматич. клетках и единичны в гаметах, дискретны и могут вести себя независимо по отношению друг к другу. Всё это послужило в своё время серьёзным аргументом против теорий «слитной» наследственности и было подтверждено экспериментально.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

Ме́нделя зако́ны

Основные закономерности наследования, открытые Г. Менделем . В 1856-1863 гг. Мендель провёл обширные, тщательно спланированные опыты по гибридизации растений гороха. Для скрещиваний он отбирал константные сорта (чистые линии), каждый из которых при самоопылении устойчиво воспроизводил в поколениях одни и те же признаки. Сорта различались альтернативными (взаимоисключающими) вариантами какого-либо признака, контролируемого парой аллельных генов (аллелей ). Напр., окраской (жёлтая или зелёная) и формой (гладкая или морщинистая) семян, длиной стебля (длинный или короткий) и т.д. Для анализа результатов скрещиваний Мендель применил математические методы, что позволило ему обнаружить ряд закономерностей в распределении родительских признаков у потомков. Традиционно в генетике принимают три закона Менделя, хотя сам он формулировал лишь закон независимого комбинирования. Первый закон, или закон единообразия гибридов первого поколения, утверждает, что при скрещивании организмов, различающихся аллельными признаками, в первом поколении гибридов проявляется лишь один из них – доминантный, а альтернативный ему, рецессивный, остаётся скрытым (см. Доминантность, Рецессивность ). Напр., при скрещивании гомозиготных (чистых) сортов гороха с жёлтой и зелёной окраской семян у всех гибридов первого поколения окраска была жёлтой. Значит, жёлтая окраска – доминантный признак, а зелёная – рецессивный. Первоначально этот закон называли законом доминирования. Вскоре было обнаружено его нарушение – промежуточное проявление обоих признаков, или неполное доминирование, при котором, однако, сохраняется единообразие гибридов. Поэтому современное название закона более точное.
Второй закон, или закон расщепления, гласит, что при скрещивании между собой двух гибридов первого поколения (или при их самоопылении) во втором поколении проявляются в определённом соотношении оба признака исходных родительских форм. В случае жёлтой и зелёной окраски семян их соотношение было 3:1, т. е. расщепление по фенотипу происходит так, что у 75% растений окраска семян доминантная жёлтая, у 25% – рецессивная зелёная. В основе такого расщепления лежит образование гетерозиготными гибридами первого поколения в равном отношении гаплоидных гамет с доминантными и рецессивными аллелями. При слиянии гамет у гибридов 2-го поколения образуется 4 генотипа – два гомозиготных, несущих только доминантные и только рецессивные аллели, и два гетерозиготных, как у гибридов 1-го поколения. Поэтому расщепление по генотипу 1:2:1 даёт расщепление по фенотипу 3:1 (жёлтую окраску обеспечивает одна доминантная гомозигота и две гетерозиготы, зелёную – одна рецессивная гомозигота).
Третий закон, или закон независимого комбинирования, утверждает, что при скрещивании гомозиготных особей, отличающихся по двум и более парам альтернативных признаков, каждая из таких пар (и пар аллельных генов) ведёт себя независимо от других пар, т. е. и гены, и соответствующие им признаки наследуются в потомстве независимо и свободно комбинируются во всех возможных сочетаниях. Он основан на законе расщепления и выполняется в том случае, если пары аллельных генов расположены в разных гомологичных хромосомах.
Часто как один из законов Менделя приводится и закон чистоты гамет, утверждающий, что в каждую половую клетку попадает только один аллельный ген. Но этот закон был сформулирован не Менделем.
Непонятый современниками, Мендель обнаружил дискретную («корпускулярную») природу наследственности и показал ошибочность представлений о «слитной» наследственности. После переоткрытия забытых законов основанное на экспериментах учение Менделя получило название менделизм. Его справедливость была подтверждена хромосомной теорией наследственности .

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Смотреть что такое "МЕНДЕЛЯ ЗАКОНЫ" в других словарях:

    - (или правила), закономерности распределения в потомстве наследственных факторов, названных позднее генами. Сформулированы Г.И. Менделем. Включают законы: единообразия гибридов первого поколения, расщепления гибридов второго поколения,… … Современная энциклопедия

    Менделя законы - * Мендэля законы * Mendel’s laws or M. Rules … Генетика. Энциклопедический словарь

    - (или правила) сформулированные Г. И. Менделем закономерности распределения в потомстве наследственных факторов, названных позднее генами. Включают: закон единообразия гибридов первого поколения; закон расщепления гибридов второго поколения; закон … Большой Энциклопедический словарь

    - (или правила), сформулированные Г. И. Менделем закономерности распределения в потомстве наследственных факторов, названных позднее генами. Включают: закон единообразия гибридов первого поколения; закон расщепления гибридов второго поколения;… … Энциклопедический словарь

    Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,… … Википедия

    Менделя законы - Открытие хромосом и новое открытие законов Менделя Генетика, занятая механизмами биологического наследования, возникла внутри эволюционной теории. Известно, что уже в 1866 г. Мендель сформулировал фундаментальные законы генетики. Он передал… … Западная философия от истоков до наших дней

mob_info