Ультразвук и ультразвуковые установки. Виды ультразвуковых установок. Ультразвуковое оборудование Схема работы установки

В основе данного способа обработки лежит механическое воздействие на материал. Ультразвуковым он называется потому, что частота ударов соответствует диапазону неслышимых звуков (f = 6-10 5 кГц).


Звуковые волны представляют собой механические упругие колебания, которые могут распространяться только в упругой среде.


При распространении звуковой волны в упругой среде материальные частицы совершают упругие колебания около своих положений со скоростью, которая называется колебательной.


Сгущение и разряжение среды в продольной волне характеризуется избыточным, так называемым звуковым давлением.


Скорость распространения звуковой волны зависит от плотности среды, в которой она движется. При распространении в материальной среде звуковая волна переносит энергию, которая может использоваться в технологических процессах.


Достоинства ультразвуковой обработки:


Возможность получения акустической энергии различными техническими приёмами;


Широкий диапазон применения ультразвука (от размерной обработки до сварки, пайки и т. д.);


Простота автоматизации и эксплуатации;


Недостатки:


Повышенная стоимость акустической энергии по сравнению с другими видами энергии;


Необходимость изготовления генераторов ультразвуковых колебаний;


Необходимость изготовления специальных инструментов со специальными свойствами и формой.


Ультразвуковые колебания сопровождаются рядом эффектов, которые могут быть использованы как базовые для разработки различных процессов:


Кавитация, т. е. образование в жидкости пузырьков и лопание их.


При этом возникают большие местные мгновенные давления, достигающие 10 8 Н/м2;


Поглощение ультразвуковых колебаний веществом, в котором часть энергии превращается в тепловую, а часть расходуется на изменение структуры вещества.


Эти эффекты используются для:


Разделения молекул и частиц различной массы в неоднородных суспензиях;


Коагуляции (укрупнения) частиц;


Диспергирования (дробления) вещества и перемешивания его с другими;


Дегазации жидкостей или расплавов за счёт образования всплывающих пузырьков больших размеров.

1.1. Элементы ультразвуковых установок


Любая ультразвуковая установка (УЗУ) включает в себя три основных элемента:


Источник ультразвуковых колебаний;


Акустический трансформатор скорости (концентратор);


Детали крепления.


Источники ультразвуковых колебаний (УЗК) могут быть двух видов – механические и электрические.


Механические преобразуют механическую энергию, например, скорость движения жидкости или газа. К ним относятся ультразвуковые сирены или свистки.


Электрические источники УЗК преобразуют электрическую энергию в механические упругие колебания соответствующей частоты. Преобразователи бывают электродинамические, магнитострикционные и пьезоэлектрические.


Наибольшее распространение получили магнитострикционные и пьезоэлектрические преобразователи.


Принцип действия магнитострикционных преобразователей основан на продольном магнитострикционном эффекте, который проявляется в изменении длины металлического тела из ферромагнитных материалов (без изменения их объёма) под действием магнитного поля.


Магнитострикционный эффект у различных материалов различен. Высокой магнитострикцией обладают никель и пермендюр (сплав железа с кобальтом).


Пакет магнитострикционного преобразователя представляет собой сердечник из тонких пластин, на котором размещена обмотка для возбуждения в нём переменного электромагнитного поля высокой частоты.


Принцип действия пьезоэлектрических преобразователей основан на способности некоторых веществ изменять свои геометрические размеры (толщину и объём) в электрическом поле. Пьезоэлектрический эффект обратим. Если пластину из пьезоматериала подвергнуть деформации сжатия или растяжения, то на её гранях появятся электрические заряды. Если пьезоэлемент поместить в переменное электрическое поле, то он будет деформироваться, возбуждая в окружающей среде ультразвуковые колебания. Колеблющаяся пластинка из пьезоэлектрического материала является электромеханическим преобразователем.


Широкое распространение получили пьезоэлементы на основе титана бария, цирконата-титана свинца.


Акустические трансформаторы скорости (концентраторы продольных упругих колебаний) могут иметь различную форму (рис. 1.1).



Рис. 1.1. Формы концентраторов


Они служат для согласования параметров преобразователя с нагрузкой, для крепления колебательной системы и ввода ультразвуковых колебаний в зону обрабатываемого материала. Эти устройства представляют собой стержни различного сечения, выполненные из материалов с коррозионной и кавитационной стойкостью, жаростойкостью, стойкостью к агрессивным средам.

1.2. Технологическое использование ультразвуковых колебаний


В промышленности ультразвук используется по трём основным направлениям: силовое воздействие на материал, интенсификация и ультразвуковой контроль процессов.


Силовое воздействие на материал


Применяется для механической обработки твёрдых и сверхтвёрдых сплавов, получения стойких эмульсий и т. п.


Наиболее часто применяются две разновидности ультразвуковой обработки на характерных частотах 16–30 кГц:


Размерная обработка на станках с применением инструментов;


Очистка в ваннах с жидкой средой.


Основным рабочим механизмом ультразвукового станка является акустический узел (рис. 1.2). Он предназначен для приведения рабочего инструмента в колебательное движение. Акустический узел получает питание от генератора электрических колебаний (обычно ламповый), к которому подключается обмотка 2.


Главным элементом акустического узла является магнитострикционный (или пьезоэлектрический) преобразователь энергии электрических колебаний в энергию механических упругих колебаний – вибратор 1.





Рис. 1.2. Акустический узел ультразвуковой установки


Колебания вибратора, который переменно удлиняется и укорачивается с ультразвуковой частотой в направлении магнитного поля обмотки, усиливаются концентратором 4, присоединённым к торцу вибратора.


К концентратору крепится стальной инструмент 5 так, чтобы между его торцом и обрабатываемой деталью 6 оставался зазор.


Вибратор помещается в эбонитовый кожух 3, куда подаётся проточная охлаждающая вода.


Инструмент должен иметь форму заданного сечения отверстия. В пространство между торцом инструмента и обрабатываемой поверхностью детали из сопла 7 подаётся жидкость с мельчайшими зёрнами абразивного порошка.


От колеблющегося торца инструмента зёрна абразива приобретают большую скорость, ударяются о поверхность детали и выбивают из неё мельчайшую стружку.


Хотя производительность каждого удара ничтожно мала, производительность установки относительно высока, что обусловлено высокой частотой колебаний инструмента (16–30 кГц) и большим количеством зёрен абразива, движущихся одновременно с большим ускорением.


По мере снятия слоёв материала производится автоматическая подача инструмента.


Абразивная жидкость подаётся в зону обработки под давлением и вымывает отходы обработки.


С помощью ультразвуковой технологии можно выполнять такие операции, как прошивка, долбление, сверление, резание, шлифование и другие.


Ультразвуковые ванны (рис. 1.3) применяются для очистки поверхностей металлических деталей от продуктов коррозии, плёнок окислов, минеральных масел и др.


Работа ультразвуковой ванны основана на использовании эффекта местных гидравлических ударов, возникающих в жидкости под действием ультразвука.


Принцип действия такой ванны состоит в следующем: обрабатываемая деталь (1) погружается в бачок (4), заполненный жидкой моющей средой (2). Излучателем ультразвуковых колебаний является диафрагма (5), соединённая с магнитострикционным вибратором (6) с помощью клеящего состава (8). Ванна установлена на подставке (7). Волны ультразвуковых колебаний (3) распространяются в рабочей зоне, где производится обработка.




Рис. 1.3. Ультразвуковая ванна


Наиболее эффективна ультразвуковая очистка при удалении загрязнений из труднодоступных полостей, углублений и каналов небольших размеров. Кроме того, этим методом удаётся получить стойкие эмульсии таких несмешивающихся обычными способами жидкостей как вода и масло, ртуть и вода, бензол и другие.


Аппаратура УЗУ сравнительно дорога, поэтому экономически целесообразно применять ультразвуковую очистку небольших по размеру деталей только в условиях массового производства.

Интенсификация технологических процессов


Ультразвуковые колебания существенно изменяют ход некоторых химических процессов. Например, полимеризация при определённой силе звука идёт более интенсивно. При снижении силы звука возможен обратный процесс – деполимеризация. Поэтому это свойство используется для управления реакцией полимеризации. Изменяя частоту и интенсивность ультразвуковых колебаний, можно обеспечить требуемую скорость реакции.


В металлургии введение упругих колебаний ультразвуковой частоты в расплавы приводит к существенному измельчению кристаллов и ускорению образования наростов в процессе кристаллизации, уменьшению пористости, повышению механических свойств затвердевших расплавов и снижению содержания газов в металлах.

Ультразвуковой контроль процессов


С помощью ультразвуковых колебаний можно непрерывно контролировать ход технологического процесса без проведения лабораторных анализов проб. Для этой цели первоначально устанавливается зависимость параметров звуковой волны от физических свойств среды, а затем по изменению этих параметров после действия на среду с достаточной точностью судят о её состоянии. Как правило, применяются ультразвуковые колебания небольшой интенсивности.


По изменению энергии звуковой волны можно контролировать состав различных смесей, не являющихся химическими соединениями. Скорость звука в таких средах не изменяется, а наличие примесей взвешенного вещества влияет на коэффициент поглощения звуковой энергии. Это даёт возможность определить процентное содержание примесей в исходном веществе.


По отражению звуковых волн на границе раздела сред («просвечивание» ультразвуковым лучом) можно определить наличие примесей в монолите и создать приборы ультразвуковой диагностики.


Выводы: ультразвук – упругие волны с частотой колебаний от 20 кГц до 1 ГГц, не слышимые человеческим ухом. Ультразвуковые установки широко используют для обработки материалов за счет высокочастотных акустических колебаний.

ЭЛЕКТРОСПЕЦ

ЭЛЕКТРОСПЕЦ

Электрохимико-механические установки,ультразвуковые установки(УЗУ)

В основе данного способа обработки лежит механическое воздействие на материал. Ультразвуковым он называется потому, что частота ударов соответствует диапазону неслышимых звуков (f = 6...10 5 кГц).
Звуковые волны представляют собой механические упругие колебания, которые могут распространяться только в упругой среде.
При распространении звуковой волны в упругой среде материальные частицы совершают упругие колебания около своих положений со скоростью, которая называется колебательной.
Сгущение и разряжение среды в продольной волне характеризуется избыточным, так называемым звуковым давлением.
Скорость распространения звуковой волны зависит от плотности среды, в которой она движется.
Чем жестче и легче материал среды, тем больше скорость. При распространении в материальной среде звуковая волна переносит энергию, которая может использоваться в технологических процессах.
Достоинства ультразвуковой обработки:

Возможность получения акустической энергии различными техническими приемами;
- широкий диапазон применения ультразвука (от размерной обработки до сварки, пайки и так далее);
- простота автоматизации и эксплуатации

Недостатки:

Повышенная стоимость акустической энергии по сравнению с другими видами энергии;
- необходимость изготовления генераторов ультразвуковых колебаний;
- необходимость изготовления специальных инструментов со специальными свойствами и формой.

Ультразвуковые колебания сопровождаются рядом эффектов, которые могут быть использованы как базовые для разработки различных процессов:
- кавитация, т.е. образование в жидкости пузырьков (во время фазы растяжения) и лопание их (во время фазы сжатия); при этом возникают большие местные мгновенные давления, достигающие значений 10 2 Н/м 2 ;
- поглощение ультразвуковых колебаний веществом, в котором часть энергии превращается в тепловую, а часть расходуется на изменение структуры вещества.
Эти эффекты используются для:
- разделения молекул и частиц различной массы в неоднородных суспензиях;
- коагуляции (укрупнения) частиц;
- диспергирования (дробления) вещества и перемешивания его с другими;
- дегазации жидкостей или расплавов зв счет образования всплывающих пузырьков больших размеров.
Элементы УЗУ
Любая УЗУ включает в себя три основных элемента:
- источник ультразвуковых колебаний;
- акустический трансформатор скорости (концентратор);
- детали крепления.
Источники ультразвуковых колебаний могут быть двух видов - механические и электрические.
Механические источники преобразуют механическую энергию, например, скорость движения жидкости или газа.
К ним относятся ультразвуковые сирены и свистки.Электрические источники УЗК преобразуют электрическую энергию в механические упругие колебания соответствующей частоты. Преобразователи бывают электродинамические, магнитострикционные и пьезоэлектрические.
Наибольшее распространение получили магнитострикционные и пьезоэлектрические преобразователи.
Принцип действия магнитострикционных преобразователей основан на продольном магнитострикционном эффекте, который проявляется в изменении длины металлического тела из ферромагнитных материалов (без изменения их объема) под действием магнитного поля.
Магнитострикционный эффект у разных металлов различен. Высокой магнитострикцией обладают никель и пермендюр.
Пакет магнитострикционного преобразователя представляет собой сердечник из тонких пластин, на котором размещена обмотка для возбуждения в нем переменного электромагнитного поля высокой частоты.
При магнитострикционном эффекте знак деформации сердечника не изменяется при изменении направления поля на обратное. Частота изменения деформации в 2 раза больше частоты (f) изменения переменного тока, проходящего по обмотке преобразователя, так как в положительный и отрицательный полупериоды происходит деформация одного знака.
Принцип действия пьезоэлектрических преобразователей основан на способности некоторых веществ изменять свои геометрические размеры (толщину и объем) в электрическом поле. Пьезоэлектрический эффект обратим. Если пластину из пьезоматериала подвергнуть деформации сжатия или растяжения, то на ее гранях появятся электрические заряды. Если пьезоэле-мент поместить в переменное электрическое поле, то он будет деформироваться, возбуждая в окружающей среде ультразвуковые колебания. Колеблющаяся пластинка из пьезоэлектрического материала является электромеханическим преобразователем.
Широкое распространение получили пьезоэлементы на основе титана бария, цирконата-титана свинца (ЦТС).
Акустические трансформаторы скорости (концентраторы продольных упругих колебаний) могут иметь различную форму (рис. 1.4-10) .

Они служат для согласования параметров преобразователя с нагрузкой, для крепления колебательной системы и ввода ультразвуковых колебаний в зону обрабатываемого материала.
Эти устройства представляют собой стержни различного сечения, выполненные из материалов с коррозионной и кавитационной стойкостью, жаростойкостью, стойкостью к агрессивным средам и на истирание.
Концентраторы характеризует коэффициент концентрации колебаний (К кк):

Увеличение амплитуды колебаний торца с малым сечением по сравнению с амплитудой колебаний торца большего сечения объясняется тем, что при одинаковой мощности колебаний во всех сечениях трансформатора скорости интенсивность колебаний малого торца в «K кк » раз больше.

Технологическое использование УЗК

В промышленности ультразвук используется по трем основным направлениям: силовое воздействие на материал, интенсификация и ультразвуковой контроль процессов.
Силовое воздействие на материал применяется для механической обработки твердых и сверхтвердых сплавов, получения стойких эмульсий и т.п.
Наиболее часто применяются две разновидности ультразвуковой обработки на характерных частотах 16.. .30 кГц:
- размерную обработку на станках с применением инструментов,
- очистку в ваннах с жидкой средой.
Основным рабочим механизмом ультразвукового станка является акустический узел
( рис. 1.4-11). Он предназначен для приведения рабочего инструмента в колебательное движение.

Акустический узел получает питание от генератора электрических колебаний (обычно ламповый), к которому подключается обмотка (2)
Главным элементом акустического узла является магнитострикционный (или пьезоэлектрический) преобразователь энергии электрических колебаний в энергию механических упругих колебаний - вибратор (1).
Колебания вибратора, который попеременно удлиняется и укорачивается с ультразвуковой частотой в направлении магнитного поля обмотки, усиливаются концентратором (4), присоединенным к торцу вибратора.
К концентратору крепится стальной инструмент (5) так, чтобы между его торцом и обрабатываемой деталью (6) оставался зазор.
Вибратор помещается в эбонитовый кожух (3), куда подается проточная охлаждающая вода.
Инструмент должен иметь форму заданного сечения отверстия. В пространство между торцом инструмента и обрабатываемой поверхностью детали из сопла (7) подается жидкость с мельчайшими зернами абразивного порошка.
От колеблющегося торца инструмента зерна абразива приобретают большую скорость, ударяются о поверхность детали и выбивают из нее мельчайшую стружку.
Хотя производительность каждого удара ничтожно маяа, производительность установки относительно высока, что обусловлено высокой частотой колебаний инструмента (16...30 кГц) и большим количеством зерен абразива (20... 100 тыс/см3), движущихся одновременно с большим ускорением.
По мере снятия слоев материала производится автоматическая подача инструмента.
Абразивная жидкость подается в зону обработки под давлением и вымывает отходы обработки.
С помощью ультразвуковой технологии можно выполнять такие операции, как прошивка, долбление, сверление, резание, шлифование н другие.
Примером могут быть выпускаемые промышленностью ультразвуковые станки прошивочные (модели 4770,4773А) и универсальные (модели 100А).
Ультразвуковые ванны (рис. 1.4-12) применяются для очистки поверхностей металлических деталей от продуктов коррозии, пленок окислов, минеральных масел и т.п.

Работа ультразвуковой ванны основана на использовании эффекта местных гидравлических ударов, возникающих в жидкости под действием ультразвука.
Принцип действия такой ванны состоит в следующем. Обрабатываемая деталь (1) погружается (подвешивается) в бачок (4), заполненный жидкой моющей средой (2).
Излучателем ультразвуковых колебаний является диафрагма (5), соединенная с магнитострикцноииым вибратором (б) с помошью клеяшего состава (8).
Ванна установлена на подставке (7). Волны ультразвуковых колебаний (3) распространяются в рабочей зоне, где производится обработка.
Наиболее эффективна ультразвуковая очистка при удалении загрязнений из труднодоступных полостей, углублений и каналов небольших размеров.
Кроме того, этим методом удается получить стойкие эмульсии таких несмешивающихся обычными способами жидкостей как вода и масло, ртуть и вода, бензол, вода и другие.
Аппаратура УЗУ сравнительно дорога, поэтому экономически целесообразно применять ультразвуковую очистку небольших по размеру деталей только в условиях массового производства.
Интенсификация технологических процессов .
Ультразвуковые колебания существенно изменяют ход некоторых химических процессов.
Например, полимеризация при определенной силе звука идет более интенсивно. При снижении силы звука возможен обратный процесс - деполимеризация.
Поэтому это свойство используется для управления реакцией полимеризации. Изменяя частоту и интенсивность ультразвуковых колебаний, можно обеспечить требуемую скорость реакции.
В металлургии введение упругих колебаний ультразвуковой частоты в расплавы приводит к существенному измельчению кристаллов и ускорению образования наростов в процессе кристаллизации, уменьшению пористости, повышению механических свойств звтвердевших расплавов и снижению содержания газов в металлах.
Ряд металлов (например, свинец и алюминий) не смешиваются в жидком виде. Наложение же на расплав ультразвуковых колебаний способствует «растворению» одного металла в другом. Ультразвуковой контроль процессов.
С помощью ультразвуковых колебаний можно непрерывно контролировать ход технологического процесса без проведения лабораторных анализов проб.
Для этой цели первоначально устанавливается зависимость параметров звуковой волны от физических свойств среды, а затем по изменению этих параметров после действия на среду с достаточной точностью судят о ее состоянии. Как правило, применяются ультразвуковые колебания небольшой интенсивности.
По изменению энергии звуковой волны можно контролировать состав различных смесей, ие являющихся химическими соединениями. Скорость звука в таких средах ие изменяется, а наличие примесей взвешенного вещества влияет на коэффициент поглощения звуковой энергии. Это дает возможность определить процентное содержание примесей в исходном веществе.
По отражению звуковых волн на границе раздела сред («просвечивание» ультразвуковым лучом) можно определить наличие примесей в монолите и создать приборы ультразвуковой диагностики.

Применяют для мойки деталей и узлов различной техники, сварки различных материалов. Ультразвук используют для получения суспензий, жидких аэрозолей и эмульсий. Для получения эмульсий выпускают, например, смеситель-эмульгатор УГС-10 и другие аппараты. Методы, основанные на отражении ультразвуковых волн от границы раздела двух сред, применяют в приборах для гидролокализации, дефектоскопии, медицинской диагностики и т. п.

Из других возможностей ультразвука следует отметить его способность обработки твердых хрупких материалов под заданный размер. В частности, весьма эффективна ультразвуковая обработка при изготовлении деталей и отверстий сложной формы в таких изделиях, как стекло, керамика, алмаз, германий, кремний и др., обработка которых другими методами затруднена.

Применение ультразвука при восстановлении изношенных деталей уменьшает пористость наплавляемого металла и увеличивает его прочность. Кроме того, снижается коробление наплавленных удлиненных деталей, например коленчатых валов двигателей.

Ультразвуковая очистка деталей

Ультразвуковую очистку деталей или предметов применяют перед ремонтом, сборкой, окраской, хромированием и другими операциями. Особенно эффективно ее применение для очистки деталей, имеющих сложную форму и труднодоступные места в виде узких щелей, прорезей, мелких отверстий и т. п.

Промышленность выпускает большое число установок для ультразвуковой очистки, различающихся конструктивными особенностями, вместимостью ванн и мощностью, например транзисторные: УЗУ-0,25 с выходной мощностью 0,25 кВт, УЗГ-10-1,6 с мощностью 1,6 кВт и др., тиристорные УЗГ-2-4 с выходной мощностью 4 кВт и УЗГ-1-10/22 с мощностью 10 кВт. Рабочая частота установок - 18 и 22 кГц.

Ультразвуковая установка УЗУ-0,25 предназначена для очистки мелких деталей. Она состоит из ультразвукового генератора и ультразвуковой ванны.

Технические данные ультразвуковой установки УЗУ-0,25

    Частота сети - 50 Гц

    Мощность, потребляемая от сети - не более 0,45 кВа

    Частота рабочая - 18 кГц

    Мощность выходная - 0,25 кВт

    Внутренние габариты рабочей ванны - 200 х 168 мм при глубине 158 мм

На передней панели ультразвукового генератора размещены тумблер включения генератора и лампа, сигнализирующая о наличии напряжения питания.

На задней стенке шасси генератора находятся: патрон для предохранителя и два штепсельных разъема, посредством которых генератор соединяется с ультразвуковой ванной и питающей сетью, клемма для заземления генератора.

В дно ультразвуковой ванны вмонтированы три пакетных пьезоэлектрических преобразователя. Пакет одного преобразователя состоит из двух пьезоэлектрических пластин из материала ЦТС-19 (цирконат-титанат свинца), двух частотно-понижающих накладок и центрального стержня из нержавеющей стали, головка которого является излучающим элементом преобразователя.

На кожухе ванны расположены: штуцер, ручка крана с надписью «Слив», клемма для заземления ванны и штепсельный разъем для соединения с генератором.

На рисунке 1 показана принципиальная электрическая схема ультразвуковой установки УЗУ-0,25.

Рис. 1. Принципиальная электрическая схема ультразвуковой установки УЗУ-0,25

Первая ступень представляет собой , работающий на транзисторе VT1 по схеме с индуктивной обратной связью и колебательным контуром.

Электрические колебания ультразвуковой частоты 18 кГц, возникающие в задающем генераторе, подаются на вход предварительного усилителя мощности.

Предварительный усилитель мощности состоит из двух ступеней, одна из которых собрана на транзисторах VT2, VT3, вторая - на транзисторах VT4, VT5. Обе ступени предварительного усиления мощности собраны по последовательно-двухтактной схеме, работающей в режиме переключения. Ключевой режим работы транзисторов позволяет получить при достаточно большой мощности высокий КПД.

Цепи баз транзисторов VT2, VT3. VT4, VT5 подключены к отдельным, включенным встречно обмоткам трансформаторов TV1 и TV2. Это обеспечивает двухтактную работу транзисторов, то есть поочередное включение.

Автоматическое смещение этих транзисторов обеспечивается резисторами R3 - R6 и конденсаторами С6, С7 и С10, С11, включенными в цепь базы каждого транзистора.

Переменное напряжение возбуждения подается на базу через конденсаторы С6, С7 и С10, С11, а постоянная составляющая базового тока, проходя через резисторы R3 - R6, создает на них падение напряжения, обеспечивающее надежное закрывание и открывание транзисторов.

Четвертая ступень - усилитель мощности. Он состоит из трех двухтактных ячеек на транзисторах VT6 - VT11, работающих в режиме переключения. Напряжение от предварительного усилителя мощности подается на каждый транзистор с отдельной обмотки трансформатора ТV З, причем в каждой ячейке эти напряжения противофазны. С транзисторных ячеек переменное напряжение подается на три обмотки трансформатора TV4, где происходит сложение мощности.

С выходного трансформатора напряжение подается на пьезоэлектрические преобразователи АА1, АА2иААЗ.

Так как транзисторы работают в режиме переключения, то выходное напряжение, содержащее гармоники, имеет прямоугольную форму. Для выделения первой гармоники напряжения на преобразователях к выходной обмотке трансформатора TV4 последовательно с преобразователями включена катушка L, индуктивность которой рассчитана таким образом, что с собственной емкостью преобразователей она составляет колебательный контур, настроенный на 1-ю гармонику напряжения. Это позволяет получить на нагрузке синусоидальное напряжение, не меняя энергетически выгодного режима транзисторов.

Питание установки осуществляется от сети переменного тока напряжением 220 В с частотой 50 Гц с помощью силового трансформатора TV5, имеющего первичную обмотку и три вторичные, одна из которых служит для питания задающего генератора, а две другие служат для питания остальных ступеней.

Питание задающего генератора осуществляется от выпрямителя, собранного по (диоды VD1 и VD2).

Питание предварительных ступеней усиления осуществляется от выпрямителя, собранного по мостовой схеме (диоды VD3 - VD6). Вторая мостовая схема на диодах VD7 - VD10 питает усилитель мощности.

В зависимости от характера загрязнения и материалов следует выбрать моющую среду. В случае отсутствия тринатрийфосфата для очистки стальных деталей может быть использована кальцинированная сода.

Время очистки в ультразвуковой ванне колеблется от 0,5 до 3 мин. Максимально допустимая температура моющей среды - 90 о С.

Перед сменой моющей жидкости генератор следует выключить, не допуская работы преобразователей без жидкости в ванне.

Очистку деталей в ультразвуковой ванне осуществляют в следующей последовательности: тумблер питания ставят в положение «Выкл.», сливной кран ванны - в положение «Закрыто», в ультразвуковую ванну заливают моющую среду до уровня 120 - 130 мм, вилку питающего кабеля включают в розетку электрической сети напряжением 220 В.

Проводят опробование установки: включают тумблер в положение «Вкл.», при этом должна загореться сигнальная лампа и появиться рабочий звук кавитирующей жидкости. О появлении кавитации можно судить также по образованию на преобразователях ванны мельчайших подвижных пузырьков.

После опробования установки ее следует отключить от сети, загрузить в ванну загрязненные детали и начать обработку.

Ультразвуковую очистку выполняют на ультразвуковых установках, включающих, как правило, одну или несколько ванн и ультразвуковой генератор. По технологическому назначению различают установки универсального и специального назначения. Первые применяют для очистки широкой номенклатуры деталей в основном единичного и серийного производства. В массовом производстве используют установки специального назначения, а нередко и автоматизированные агрегаты и поточные линии.

Рисунок 28 – Ванна для ультразвуковой очистки типа УЗВ-0,4

Мощность универсальных ванн колеблется от 0,1 до 10 кВт, а емкость - от 0,5 до 150 л. Небольшие по мощности ванны имеют встроенные в дно пьезокерамические преобразователи, а мощные - несколько магнитострикционных.

Однотипны ультразвуковые настольные ванны УЗУ-0,1; УЗУ-0,25 и УЗУ-0,4. Эти ванны чаще применяют в лабораторных условиях и единичном производстве; для их питания используют полупроводниковые генераторы с выходной мощностью 100, 250 и 400 Вт. Ванны имеют корпус прямоугольной формы и съемную крышку. В дно ванн встроены пьезокерамические преобразователи (тип ПП1-0,1) в количестве от одного до трех в зависимости от мощности ванны. Для загрузки деталей навалом имеются сетчатые корзины. Ванны имеют встроенные в общий корпус отсеки для ополаскивания деталей после очистки.

На рис. 28 показана ультразвуковая настольная очистная ванна типа УЗВ-0,4, работающая с генератором УЗГЗ-0,4. Она имеет металлический звукоизолированный корпус 1 цилиндрической формы и крышку 3, связанную с корпусом шарниром и эксцентриковым зажимом 2 с ручкой. К дну рабочей части ванны, являющейся резонансной мембраной, припаян пакет магнитострикционного преобразователя . Корпус его имеет две трубы для подачи и стока проточной воды, охлаждающей преобразователь. Штуцера этих труб выведены к нижней части корпуса для удобства присоединения к ним шлангов. На корпусе расположен тумблер включения и выключения ультразвуковых колебаний на генераторе при установке его в отдалении от ванны. Здесь же имеется ручка открытия слива моющей жидкости и соответствующий штуцер. Ванна комплектуется корзиной для загрузки очищаемых деталей.

Рисунок 29 – Ванна для ультразвуковой очистки типа УЗВ-18М

Из числа универсальных очистных ванн большей мощности широкое распространение получили ванны типа УЗВ. Ванны этого типа имеют аналогичную конструкцию. На рис. 29 приведена ванна типа УЗВ-18М. Сварной каркас 1 выполнен в звукозащитном исполнении. Он закрыт крышкой 5 с противовесами 4. Подъем и опускание крышки производится вручную ручками 6. В дно 9 рабочей части ванны встроены магнитострикционные преобразователи 8 типа ПМС-6-22 (от одного до четырех в зависимости от мощности ванны). Для отсоса паров моющей жидкости установлены бортовые сборники с выходным патрубком II, который присоединяется к вентиляционной системе цеха. В дно рабочей части вмонтирован кран для слива моющей жидкости; рукоятка 19 крана выведена на лицевую сторону. Слив по трубам 14 и 16 можно производить в бак-отстойник, канализацию или в бак 7, встроенный в ванну. Чтобы исключить возможность переполнения рабочей части жидкостью, имеется дренажная труба.

Ультразвуковые установки, предназначенные для обработки различных деталей мощным ультразвуковым акустическим полем в жидкой среде. Установки УЗУ4-1,6/0 и УЗУ4М-1,6/0 позволяют решать задачи тонкой очистки фильтров топливных и гидравлических масляных систем от нагара, смолистых веществ, продуктов коксования масел и т.п. Очищенные фильтры фактически приобретают вторую жизнь. Причем ультразвуковой обработке они могут подвергаться неоднократно. Выпускаются также установки малой мощности серии УЗСУ для очистки и ульразвуковой обработки поверхности различных деталей. Процессы ультразвуковой очистки необходимы в электронной, приборостроительной промышленности, авиации, ракетно-космической технике и везде, где требуются высокие технологически чистые технологии.

Установки УЗУ 4-1,6-0 и УЗУ 4М-1,6-0

Ультразвуковая очистка различных фильтров летательных аппаратов от смолистых веществ и продуктов коксования.

mob_info