Теория струн и петлевой квантовой теории гравитации. Физические вопросы, на которые должна отвечать теория струн и петлевая квантовая гравитация. Петлевая квантовая гравитация

Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин (Lee Smolin), Абэй Аштекар (Abhay Ashtekar), Тэд Джекобсон (Ted Jacobson) и Карло Ровелли (Carlo Rovelli). Согласно этой теории, пространство и время действительно состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время . Хотя многие космологические модели могут описать поведение Вселенной только от Планковского времени после Большого Взрыва , петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Но встаёт проблема выбора координат. Можно сформулировать общую теорию относительности (ОТО) в бескоординатной форме, например, с помощью внешних форм, однако, вычисления 4-формы Римана мы будем осуществлять в конкретной метрике. Любош Мотль - один из самых активных и остроумных пропагандистов теории струн - по этому поводу выразился так, что говорить, например, о «фоновой независимости» пропагатора спиновой сети петлевой теории гравитации без указания единичного состояния - то же самое, что вычислять ряд Тейлора в точке х 0 без указания х 0 .

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого семейства фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей .

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего семейств могут быть представлены в виде более сложных брэдов, а фермионы первого семейства представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к семействам более высокого ранга, должны получаться точно таким же образом, как и для частиц первого семейства.

Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций .

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время . Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны , вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса , в них не обсуждается.

Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев (A. Starodubtsev) в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона - базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона .

Используя формализм модели спиновой пены, имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы стандартной модели, такие как фотоны , глюоны и гравитоны - независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены , фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов , (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон , описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований .

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью , отмечая, что, хотя его модель и была инспирированна преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальные теориях, таких как, например, М-теория . Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). В модифицированной версии его статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины , смешивание Каббибо, а также необходимость привязки его модели к более фундаментальным теориям. Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

В более позднем варианте статьи описывается динамика брэдов с помощью переходов Пачнера (Pachner moves).

Источники и иллюстрации

Литература

  • Three Roads to Quantum Gravity. Lee Smolin. Basic Books, 2001.
  • The Quantum of Area? John Baez. Nature, vol.421, pp. 702-703; February 2003.
  • How Far Are We from the Quantum Theory of Gravity? Lee Smolin. March 2003. Препринт
  • Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27-50; November 2003.
  • Loop Quantum Gravity. Lee Smolin.

Примечания

п ·о ·р

Теории гравитации
Стандартные теории гравитации Альтернативные теории гравитации Квантовые теории гравитации Единые теории поля
Классическая физика
  • Общая теория относительности
    Математическая формулировка общей теории относительности
    Гамильтонова формулировка общей теории относительности

Принципы

  • Геометродинамика (англ.)
Классические
  • Модифицированная ньютоновская динамика (англ.)

Релятивистские

  • Теория гравитации Уайтхеда (англ.)
  • Теория Эйнштейна - Картана (англ.)

Написать заметку о петлевой квантовой гравитации меня побудили несколько вещей. И одна из них -- на эту тему, из которого человек "не в теме" едва ли поймет вообще, о чем идет речь. Это просто гениально и совершенно для википедии бесполезно:

В своей статье 2005 года, С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова (M. Khovanov)), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель — гелонной. Данная модель приводит к интерпретации электрического заряда как топологической сущности, возникающей при перекручивании риббонов.


Ни фига тут нормальному человеку непонятно, а дело вот в чем.

Первая известная теория гравитации была создана еще Аристотелем. Он считал, что тела падают с разной скоростью, прямо пропорционально массе и обратно -- плотности среды. Это почти правда при наличии трения. Впрочем, большого практического смысла в то время теория все равно не имела.

Научная же теория гравитации была создана Ньютоном, все ее проходили в школе, поэтому напоминать не буду. Ньютон описал закон, по которому тела притягиваются друг к другу. Но к 20му веку физики от выведения законов переключились на поиск причин. Стал важен вопрос не "как", а "почему". И никто иной как Энштейн предложил теорию гравитации, основанную на геометрии Римана: гравитация определяется кривизной четырехмерного пространства-времени. Физика оказалась промоделирована довольно абстрактной геометрией. Теория элегантна, и подтверждается экспериментально.

Однако, на этом физики не остановились. Дело в том, что в 20-30 годы была разработана квантовая механика, которая довольно быстро развилась в квантовую теорию поля. Суть в том, что физические величины перестали быть непрерывными, но принимающими ступенчатые, дискретные значения. Например, энергия. В квантовой теории поля "переносчиками" фундаментальных взаимодействий стали кванты, некоторые неделимые "кусочки". Самое простое -- фотоны в электродинамике (или фотоны света, например). Или глюоны -- в сильном взаимодействии кварков. Но суть похожа. Причем теории были выстроены таким образом, что на микро-уровне можно было "работать" на уровне квантов, но при непрерывном переходе к макро-уровню получались все типичные свойства поля. В физике известны 4 типа фундаментальных полей (взаимодействий), и три из них квантуются. Но не гравитация. Причем проблемы квантования гравитационного поля оказались настолько фундаментальными, что физики стали искать другие способы "связать" воедино все фундаментальные поля (зачем? чтобы объяснить, как устроен мир), и появились теории струн и другие Теории Всего, основанные на экзотических пространствах и симметриях.

У всех этих теорий было одно свойство, очень любимое математиками -- геометрия пространства считалось непрерывной и гладкой. Собственно, так оно и есть в Римановой геометрии, использованной Энштейном. В середине 80х Ли Смолин с коллегами рискнули отказаться от гладкости и непрерывности, и им впервые удалось построить непротиворечивую квантовую модель гравитации при условии, что пространство тоже квантуемо! То есть состоит из "ячеек" планковской длины (десять в минус 33 см.), причудливым образом между собой соединенных. Для удобства представления, вместо ячеек они стали рассматривать узлы, а их соединения образуют то, что стали называть спиновой сетью . Это позволяет задать любую, сколь угодно искривленную, геометрию. Неожиданно, вроде бы абстрактная математическая дисциплина -- топология -- вдруг стала востребована именно тут, так как именно она изучает подобного рода объекты.

Но спиновая сеть -- это лишь мгновенный "снимок" состояния. В реальности, каждый момент времени в мире что-то происходит, и это выражается в трансформации сети. Сеть плюс время называется спиновой пеной , потому что во времени сеть постоянно "бурлит", переживая бесконечные трансформации. Время "получилось" тоже дискретным, с интервалом между "тиками" десять в минус 43 см.

Как любая хорошая теория (и этим, кстати, она отличается от Теории Струн), квантовая теория гравитации допускает эксперименты, которые могут ее подтвердить или опровергнуть. На сегодняшний момент, современная аппаратура не позволяет поставить такие эксперименты -- слишком малы эффекты, которые дает "зернистость" пространства -- но техника и фантазия ученых не стоят на месте. Во всяком случае такие эксперименты не кажутся невозможными.

Также в последнее время доказано, что в петлевая квантовая гравитация "в пределе" приводит к энштейновской модели (впрочем, иначе она бы не имела смысла). Интересно, что в отличие от энштейновской теории, в "нашей" теории Вселенная существует и до Большого Взрыва.

Теперь настало время вернуться к тому, о чем же пишет Википедия. На самом деле, о важном. О том, что теория петлевой квантовой гравитации позволяет вывести

Физик-теоретик Сабина Хоссенфельдер из Стокгольма посчитала двух альтернативных претендентов на «теорию всего» (теорию струн и петлевую квантовую гравитацию) сторонами одной медали. По ее мнению, в настоящее время петлевая квантовая гравитация достигла большого прогресса. Об этом ученый рассказала на страницах онлайн-издания Quanta Magazine.

Теория струн

Тео?рия струн - направление теоретической физики, изучающее динамику взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации.

Теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10?35 м. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени. Квантовая теория струн возникла в начале 1970-х годов в результате осмысления формул Габриэле Венециано, связанных со струнными моделями строения адронов. Середина 1980-х и середина 1990-х ознаменовались бурным развитием теории струн, ожидалось, что в ближайшее время на основе теории струн будет сформулирована так называемая «единая теория», или «теория всего», поискам которой Эйнштейн безуспешно посвятил десятилетия. Но, несмотря на математическую строгость и целостность теории, пока не найдены варианты экспериментального подтверждения теории струн. Возникшая для описания адронной физики, но не вполне подошедшая для этого, теория оказалась в своего рода экспериментальном вакууме описания всех взаимодействий.

Одна из основных проблем при попытке описать процедуру редукции струнных теорий из размерности 26 или 10 в низкоэнергетическую физику размерности 4 заключается в большом количестве вариантов компактификаций дополнительных измерений на многообразия Калаби - Яу и на орбифолды, которые, вероятно, являются частными предельными случаями пространств Калаби - Яу. Большое число возможных решений с конца 1970-х и начала 1980-х годов создало проблему, известную под названием «проблема ландшафта», в связи с чем некоторые учёные сомневаются, заслуживает ли теория струн статуса научной.

Несмотря на эти трудности, разработка теории струн стимулировала развитие математических формализмов, в основном - алгебраической и дифференциальной геометрии, топологии, а также позволила глубже понять структуру предшествующих ей теорий квантовой гравитации. Развитие теории струн продолжается, и есть надежда, что недостающие элементы струнных теорий и соответствующие феномены будут найдены в ближайшем будущем, в том числе в результате экспериментов на Большом адронном коллайдере.

Теория петлевой квантовой гравитации

Петлевая квантовая гравитация - одна из теорий квантовой гравитации.

В теории квантовой гравитации привычное нам гладкое и непрерывное пространство на сверхмалых масштабах оказывается структурой с очень сложной геометрией.

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

В своей статье 2005 года, С. Бильсон-Томпсон (Sundance Bilson-Thompson) предложил модель (по-видимому основанную на более общей теории брэдов (математических кос) М. Хованова), в которой ришоны Харари (Harari) были преобразованы в протяжённые лентообразные объекты, называемые риббонами. Потенциально это могло бы объяснить причины самоорганизации субкомпонентов элементарных частиц, приводящие к возникновению цветового заряда, в то время как в предыдущей преонной (ришонной) модели базовыми элементами являлись точечные частицы, а цветовой заряд постулировался. Бильсон-Томпсон называет свои протяжённые риббоны «гелонами», а модель - гелонной. Данная модель приводит к интерпретации электрического заряда как топологической сущности, возникающей при перекручивании риббонов.

Во второй статье, опубликованной Бильсоном-Томпсоном в 2006 г. совместно с Ф. Маркополу (Fotini Markopolou) и Л. Смолиным (Lee Smolin) предположили, что для любой теории квантовой гравитации, относящейся к классу петлевых, в которых пространство-время квантовано, возбуждённые состояния самого пространства-времени могут играть роль преонов, приводящих к возникновению стандартной модели как эмергентному свойству теории квантовой гравитации.

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия. При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей.

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций.

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время. Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны, вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса, в них не обсуждается.

Л. Фрейдель (L. Freidel), Дж. Ковальский-Гликман (J. Kowalski-Glikman) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона - базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона.

Используя формализм модели спиновой пены, имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны, глюоны и гравитоны - независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо?льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены, фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон, описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований.

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью, отмечая, что, хотя его модель и была инспирирована преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория. Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Как сообщает Хоссенфельдер, расширения петлевой квантовой гравитации в высших измерениях включают в себя, подобно теории струн, суперсимметрию. Для того, чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, первая, как полагает Родольфо Гамбини из Уругвая, требует введения взаимодействий, похожих на таковые в теории струн.

Герман Верлинде из Принстонского университета полагает, что петлевая квантовая гравитация может помочь достичь прогресса в понимании идеи AdS/CFT-соответствия (anti-de Sitter / conformal field theory correspondence) между конформной теорией поля и гравитацией. В своей недавней работе, как сообщает Хоссенфельдер, физик при помощи методов петлевой квантовой гравитации описал трехмерное пространство-время (в котором две координаты пространственные и одна - временная).

В настоящее время над теорией струн работают несколько тысяч физиков-теоретиков. Над петлевой квантовой гравитацией - в сотни раз меньшее число специалистов. Большинство струнных теоретиков не воспринимают всерьез петлевую квантовую гравитацию. Теория струн основана на предположении существования на планковских масштабах гипотетических одномерных объектов - струн, возбуждения которых интерпретируются как элементарные частицы и их взаимодействия.

Эта теория является последовательным развитием квантовой теории поля, которая в настоящее время является математическим аппаратом для современной физики элементарных частиц - Стандартной модели. В отличие от теории струн, петлевая квантовая гравитация предполагает существование дискретной сетки пространства-времени, образованной квантовыми ячейками. Динамика этих ячеек определяет структуру пространства-времени.

Предлагаем вам посмотреть дебаты физиков, защищающих противоположную их специализации теорию:

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Просмотры: 227

Несмотря на более чем полувековую историю попыток, гравитация -- единственное из фундаментальных взаимодействий, для которого пока ещё не построена общепризнанная непротиворечивая квантовая теория. При низких энергиях, в духе квантовой теории поля, гравитационное взаимодействие можно представить как обмен гравитонами -- калибровочными бозонами со спином 2.

Однако в последнее время разработаны три перспективных подхода к решению задачи квантования гравитации: теория струн, петлевая квантовая гравитация и причинная динамическая триангуляция.

Теория струн

В ней вместо частиц и фонового пространства-времени выступают струны и их многомерные аналоги -- браны. Для многомерных задач браны являются многомерными частицами, но с точки зрения частиц, движущихся внутри этих бран, они являются пространственно-временными структурами. Вариантом теории струн является М-теория.

Петлевая квантовая гравитация

В ней делается попытка сформулировать квантовую теорию поля без привязки к пространственно-временному фону, пространство и время по этой теории состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время. Хотя многие космологические модели могут описать поведение вселенной только от Планковского времени после Большого Взрыва, петлевая квантовая гравитация может описать сам процесс взрыва, и даже заглянуть раньше. Петлевая квантовая гравитация позволяет описать все частицы стандартной модели, не требуя для объяснения их масс введения бозона Хиггса.

Родоначальниками «петлевой квантовой теории гравитации» в 80-е годы XX века являются Ли Смолин , Абэй Аштекар , Тэд Джекобсон (англ. ) и Карло Ровелли . Согласно этой теории, пространство и время состоят из дискретных частей. Эти маленькие квантовые ячейки пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время .

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия . При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей .

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций .

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время . Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны , вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса , в них не обсуждается.

Л. Фрейдель (L. Freidel ), Дж. Ковальский-Гликман (J. Kowalski-Glikman ) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона - базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона .

Используя формализм модели спиновой пены , имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны , глюоны и гравитоны - независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены , фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон , описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований .

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью , отмечая, что, хотя его модель и была вдохновлена преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория . Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Сабина Хоссенфельдер предложила рассматривать двух альтернативных претендентов на «теорию всего» - теорию струн и петлевую квантовую гравитацию как стороны одной медали. Чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, в ней необходимо ввести взаимодействия, которые похожи на рассматриваемые в теории струн. .

Проблемы теории

В модифицированной версии своей статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины , смешивание Кабиббо , а также необходимость привязки его модели к более фундаментальным теориям.

В более позднем варианте статьи описывается динамика брэдов с помощью переходов Пачнера (англ. Pachner moves ).

См. также

Источники

Литература

Примечания

  1. Смолин Л. Атомы пространства и времени // В мире науки . - 2004. - № 4. - С. 18-25. - URL: http://www.chronos.msu.ru/RREPORTS/smolin_atomy/smolin_atomy.htm Архивная копия от 23 февраля 2009 на Wayback Machine
  2. , с. 219.
  3. С. Ю. Александров Лоренц-ковариантная петлевая квантовая гравитация // ТМФ. - 2004. - т. 139, № 3. - c. 363–380. - URL:
mob_info