Структурный синтез плоских механизмов. Структурный анализ механизмов Кинематические пары и их классификации

3. СТРУКТУРНЫЙ АНАЛИЗ И СИНТЕЗ МЕХАНИЗМА

Цель структурного анализа состоит в изучении строения механизма, определении его степени подвижности и класса.

3.1. Кинематические пары и их классификация

Рассмотрим основные виды и условные обозначения кинематических пар (рис. 3.1) /11/.

Рис. 3.1 Кинематические пары и их условные обозначения

В качестве признаков классификации кинематических пар могут быть: число условий связи и характер соприкосновения звеньев.

Все кинематические пары делят на классы в зависимости от количества ограничений, налагаемых на относительное движение звеньев, которые

Разработал Корчагин П.А.

входят в эти пары. Эти ограничения называют условиями связи в

кинематических парах /6/.

Твердое тело (рис. 3.2) в

пространстве

6 степеней

Кинематическая пара требует

постоянного

соприкосновения

накладывает

ограничения (условия связи) на их

движение. Число условий связи

обозначается

может быть

Рис. 3.2 Возможные перемещения

равно от 1 до 5.

Следовательно,

число степеней свободы Н звена кинематической пары в относительном движении будет равно /1/

Из равенства следует, что число степеней свободы Н звена кинематической пары в относительном движении может изменяться от 1 до 5. Не может быть кинематической пары, не налагающей ни одной связи, так как это противоречит определению кинематической пары. Но не может быть и кинематической пары, налагающей больше пяти связей, так как в этом случае оба звена, входящие в кинематическую пару, были бы неподвижными по отношению одно к другому, т.е. образовали бы уже не два, а одно тело /6/.

Класс кинематической пары равен числу условий связи наложенных на относительное движение каждого звена кинематической пары /6/.

По характеру соприкосновения звеньев кинематические пары делят на две группы: высшие и низшие /1/.

Кинематические пара, которая выполнена соприкасанием элементов ее звеньев только по поверхности - низшая, а выполненная соприкасанием элементов ее звеньев только по линии или в точках - высшая. В низших парах наблюдается геометрическое замыкание. В высших парах - силовое - пружиной или весом /1/.

Вращательная пара (рис. 3.1, а) - одноподвижная, допускает лишь относительное вращательное движение звеньев вокруг оси. Звенья 1 и 2 соприкасаются по цилиндрической поверхности, следовательно, это низшая пара, замкнутая геометрически /11/.

Поступательная пара (рис. 3.1, б) - одноподвижная, допускает лишь относительное поступательное движение звеньев. Звенья 1 и 2 соприкасаются по поверхности, следовательно, это низшая пара, замкнутая геометрически /11/.

Разработал Корчагин П.А.

Цилиндрическая пара (рис. 3.1, в) - двухподвижная, допускает независимые вращательное и поступательное относительные движения звеньев. Звенья 1 и 2 соприкасаются по цилиндрической поверхности, следовательно это низшая пара, замкнутая геометрически /11/.

Сферическая пара (рис. 3.1, г) - трехподвижная, допускает три независимых относительных вращения звеньев. Звенья 1 и 2 соприкасаются по сферической поверхности, следовательно, это низшая пара, замкнутая геометрически /11/.

Примеры четырех- и пятиподвижных пар и их условные обозначения даны на рис. 3.1, д, е. Возможные независимые перемещения (вращательные и поступательные) показаны стрелками /11/.

Низшие более износостойки, т.к. поверхность касания больше, следовательно передача одной и той же силы в низших парах происходит при меньшем удельном давлении и меньших контактных напряжениях чем в высших. Износ пропорционален удельному давлению поэтому элементы звеньев низших пар изнашиваются медленнее чем высших /11/.

3.2 Кинематическая цепь

Кинематической цепью называется система звеньев, образующих между собой кинематические пары /6/.

Кинематические цепи могут быть: плоские и пространственные, открытые и замкнутые, простые и сложные /1/.

Пространственной называют цепь, в которой точки звеньев описывают неплоские траектории или траектории, расположенные в пересекающихся плооскостях /1/.

Открытой называют цепь, в которой есть звенья, входящие только в одну кинематическую пару (рис. 3.3, а) /1/.

Замкнутой называют цепь, каждое звено которой входит не менее чем в две кинематические пары (рис. 3.3, а, б) /1/.

Рис. 3.3 Кинематические цепи а) – открытая простая; б – замкнутая простая; в) – замкнутая сложная

Простая цепь - у которой каждое звено входит не более чем в две кинематические пары (рис. 3.3, а, б).

Разработал Корчагин П.А.

Сложная цепь - в которой имеется хотя бы одно звено, входящее более чем в две кинематические пары (рис. 3.3, в) /1/.

3.3 Число степеней свободы механической системы. Степень подвижности механизма. Структурные формулы

Числом степеней свободы механической системы называется число независимых возможных перемещений элементов системы /1, 4/.

Система (рис. 3.5) имеет два независимых возможных перемещения относительно 1 звена, т.е. механическая система имеет 2 степени свободы

Степенью

подвижности

механизма

называется

степеней

механизма

относительно

звена принимаемое 2

за неподвижное /1/.

Составим формулы для расчета

степени подвижности

механизма,

называют

структурными

формулами.

пространственный

механизм

подвижных

собой кинематическими парами. Причем число пар пятого класса р5 , четвертого класса р4 , третьего - р3 , второго - р2 , первого - р1 /1/.

Число степеней свободы не связанных между собой n звеньев равно /1/:

Кинематические пары накладывают ограничения (условия связи). Каждая пара I кл. - одно условие связи, II кл. - два условия связи и т.д. /1/

Применение этой формулы возможно только в том случае если на движения звеньев, входящих в состав механизма не наложено каких-либо общих дополнительных условий.

Разработал Корчагин П.А.

Если на движения всех звеньев механизма в целом наложено три общих ограничения, т.е. рассматривается плоский механизм, то

3.4 Обобщенные координаты механизма. Начальные звенья

Степень подвижности механизма одновременно является числом независимых координат звеньев, которыми необходимо задаться, чтобы все звенья механизма имели бы вполне определенные движения.

Обобщенными координатами механизма называются независимые между собой координаты, определяющие положения всех звеньев механизма относительно стойки /11/.

Начальным звеном называется звено, которому приписывается одна или несколько обобщенных координат механизма /11/.

За начальное звено выбирают такое, которое упрощает дальнейший анализ механизма, при этом оно не всегда совпадает с входным звеном. За начальное звено в ряде случаев удобно выбирать кривошип /11/.

3.5 Лишние степени свободы. Пассивные связи

Кроме степеней свободы звеньев и связей, активно воздействующих на характер движения механизмов, в них могут встречаться степени свободы и условия связи не оказывающие никакого влияния на характер движения механизма в целом. Удаление из механизмов звеньев и кинематических пар, которым эти степени свободы и условия связи принадлежат, может быть сделано без изменения общего характера движения механизма в целом. Такие степени свободы называются лишними, а связи пассивными

Пассивными или избыточными связями называются условия связи, не оказывающие влияние на характер движения механизма /6/.

В некоторых случаях пассивные связи необходимы для обеспечения определенности движения: например, шарнирный параллелограмм (рис. 3.6), проходя через свое предельное положение, когда оси всех звеньев находятся на одной прямой, может превратиться в антипараллеограмм; для предупреждения этого сцепляют кривошипы АВ и CD пассивной связью - вторым шатуном EF. В других случаях пассивные связи повышают жесткость системы, устраняют или уменьшают влияние деформаций на

Разработал Корчагин П.А.

движение механизма, улучшают распределение усилий, действующих на звенья механизма и т.д. /6/.

Рис. 3.6 Кинематическая схема параллелограммного механизма

Лишними степенями свободы называюся степени свободы, не влияющие на закон движения механизма /6/.

Нетрудно представить, что круглый ролик (см. рис. 3.6) может свободно поворачиваться вокруг своей оси, не влияя на характер движения механизма в целом. Таким образом, возможность вращения ролика является лишней степенью свободы. Ролик, представляет собой конструктивный элемент, введенный для уменьшения сопротивления, сил трения и износа звеньев. Кинематика механизма не изменится если ролик удалить и толкатель соединить непосредственн со звеном CD в кинематическую пару IV класса (см. рис. 3.6, б) /6/.

Если известно число степеней свободы плоского механизма, то можно найти число избыточных связей q для плоского механизма по формуле /11/

i= 1

В структурные формулы не входят размеры звеньев, поэтому при структурном анализе их можно предполагать любыми (в некоторых пределах).

Если избыточных связей нет (q=0), то сборка механизма происходит без деформации звеньев, последние как бы самоустанавливаются, а механизмы называются самоустанавливающимися. Если избыточные связи есть (q > 0), то сборка механизма и движение его звеньев становятся возможными только при деформации последних /11/.

По формулам (3.6) − (3.8) проводят структурный анализ имеющихся механизмов и структурных схем новых механизмов /11/.

Разработал Корчагин П.А.

3.6 Влияние избыточных связей на работоспособность

и надежность машин

Как было отмечено выше, при наличии избыточных связей (q > 0) механизм нельзя собрать без деформации звеньев. Такие механизмы требуют повышенной точности изготовления. В противном случае в процессе сборки звенья механизма деформируются, что вызывает нагружение кинематических пар и звеньев значительными дополнительными силами. При недостаточной точности изготовления механизма с избыточными связями трение в кинематических парах может сильно увеличиться и привести к заклиниванию звеньев. Поэтому с этой точки зрения избыточные связи в механизме нежелательны /11/.

Однако в целом ряде случаев приходится сознательно проектировать и изготавливать статически неопределимые механизмы с избыточными связями для обеспечения нужной прочности и жесткости системы, особенно при передаче больших сил /11/.

Например, коленчатый вал четырехцилиндрового двигателя (рис. 3.7) образует с подшипником А одноподвижную вращательную пару. Этого вполне достаточно с точки зрения кинематики данного механизма с одной степенью свободы (W=1). Однако, учитывая большую длину вала и значительные силы, нагружающие коленчатый вал, приходится добавлять еще два подшипника А’ и А” , иначе система будет неработоспособна из-

за недостаточной прочности и жесткости.

вращательные

двухподвижные

цилиндрические, то

помимо пяти основных связей будет

наложено

4 ×

2 = 8 добавочных

А’

А”

(повторных) связей. потребуется

высокая точность изготовления для

обеспечения соосности всех опор,

деформироваться, и в материале подшипников могут появиться недопустимо большие напряжения /11/.

При конструировании машин следует стремиться устранить избыточные связи или же оставлять их минимальное количество, если полное их устранение оказывается невыгодным из-за усложнения конструкции или по каким-либо другим соображениям. В общем случае оптимальное решение следует искать, учитывая наличие необходимого технологического оборудования, стоимости изготовления, требуемого

Разработал Корчагин П.А.

ресурса работы и надежности машины. Следовательно, это весьма сложная задача на оптимизацию для каждого конкретного случая /11/.

3.7 Структурная классификация плоских механизмов по Ассуру-Артоболевскому

В настоящее время наибольшее распространение в промышленности получили плоские механизмы. Поэтому рассмотрим принцип их структурной классификации. /6/.

Современные методы кинематического и кинетостатического анализа, а в значительной мере и методы синтеза механизмов связаны с их структурной классификацией. Структурная классификация АссураАртоболевского является одной из наиболее рациональных классификаций плоских рычажных механизмов с низшими парами. Достоинством этой классификации является то, что с ней неразрывно связаны методы кинематического, кинетостатического и динамического исследования механизмов /6/.

Ассур предложил (1914-18 гг.) рассматривать любой плоский механизм с низшими парами как совокупность начального механизма и ряда кинематических цепей с нулевой степенью подвижности /1, 6/.

Начальным (или исходным) механизмом (рис. 3.8) называется совокупность начальных звеньев и стойки. /6/.

Группой Ассура (рис. 3.9, а) или структурной группой называется кинематическая цепь, число степеней свободы которой равно нулю, относительно элементов ее внешних пар, причем группа не должна распадаться на более простые кинематические цепи удовлетворяющие этому условию. Если такое распадение возможно, то такая кинематическая цепь состоит из нескольких групп Ассура /Л.3/.

Разработал Корчагин П.А.

На рис. 3.9, б показана кинематическая цепь степень подвижности которой равна

W=3 n − 2 p5 =3 4 − 2 6=0

Но несмотря на это, данная цепь не является группой Ассура, так как распадается на две группы (выделенные тонкой линией) степень подвижности которых также равна нулю.

Степень подвижности гр. Ассура равна:

W=3 n − 2 p5 =0

p 5 =

Из формулы (3.11) видно, что n может быть только целым числом, кратным двум, так как количество кинематических пар p5 может быть

целым числом. Тогда

составить

определяющую

количество кинематических пар и звеньев в группе Ассура /1/

Таблица 3.1

Количество звеньев

Количество кинематических пар

По предложению Артоболевского структурным группам присваивается класс и порядок /1/.

Класс гуппы Ассура равен числу кинематических пар, входящих в наиболее сложный замкнутый контур, образованный внутренними кинематическими парами /1/.

Порядок группы Ассура равен числу свободных элементов кинематических пар /1/.

Класс механизма равен наивысшему классу группы Ассура, входящему в его состав /1/.

Исходному механизму (см. рис. 3.8) присваивается первый класс. Первый столбик таблицы 3.1 относится к гр. Ассура II класса; второй -

III класса и т.д. Примеры групп Ассура представлены на рис. 3.10.

Разработал Корчагин П.А.

Рис. 3.10 Группы Ассура:

а) – II класс, 2 порядок; б) – III класс 3 порядок; в) – III класс 4 порядок;

г) – IV класс 4 порядок

Простейшее сочетание чисел звеньев и пар, удовлетворяющих условию (3.11), будет n=2, p5 =3. Группу, имеющую два звена и три пары V класса, называют группой II второго класса второго порядка или двухповодковой группой. Двухповодковые группы бывают пяти видов (таблица 3.2). Двухповодковая группа с тремя поступательными парами невозможна, так как будучи присоединена к стойке, она не обладает нулевой подвижностью и может перемещаться /6/.

3.8 Пример структурного анализа плоского механизма

Проведем структурный анализ суммирующего механизма изображенного на рис. 3.11.

Порядок структурного анализа:

1. Обнаружить и исключить лишние степени свободы и пассивные связи (в данном случае вращение роликов)

Разработал Корчагин П.А.

1. Структурное и кинематическое исследование плоско-рычажного механизма

1.1 Структурный анализ механизма

1.1.1 Наименование звеньев и их количество

Дана структурная схема механизма. Механизм предназначен для преобразования вращательного движения кривошипа 1 в возвратно-поступательное движение ползуна 5.

Для данного кривошипно-ползунного механизма (изображенного на 1 листе графического задания), наименование звеньев и их количество приведено в таблице 1.

Таблица 1

1.1.2 Кинематические пары и их классификации

Для данного кривошипно-ползунного механизма кинематические пары и их классификации приведены в таблице 2.


Таблица 2

Всего звеньев 6 из них подвижных n=5

1.1.3 Степень подвижности механизма

Число степеней свободы (степень подвижности) кривошипно-ползунного механизма определяется по формуле П.Л. Чебышева:

где n – число подвижных звеньев механизма;

P 1 – число одноподвижных кинематических пар.

Т.к. W=1 механизм имеет одно ведущее звено и это звено №1.

1.1.4 Разложение механизма на структурные группы (группы Ассура)

Проведенное разложение кривошипно-ползунного механизма на структурные группы (группы Ассура) приведено в таблице 3.


Таблица 3

Группа Эскиз группы Звенья составляющие группу КП в группе Степень подвижности Класс, порядок, модификация группы
внутренние внешние
Ведущая группа О 1 А 1–0 О 1 А W=1 1 кл.1 вид.
Группа Ассура О 2 АB 2–3 B 3 (2–3) А (2–1)О 2 (0–3) W=1 II кл., 2 пор., 3 модиф.
Группа Ассура О 3 DС 4–5 D 4 (4–5) C (2–4)D 5 (0–5) W=1 II кл., 2 пор., 2 модиф.

1.1.5 Структурная формула механизма (порядок сборки)

К механизму 1 класса, 1 вида состоящего из звеньев 0 и 1 присоединена группа Ассура II класса, 2 порядка, 3 модификации состоящая из звеньев 2 и 3. К этой группе присоединена группа Ассура II класса, 2 порядка, 2 модификации состоящая из звеньев 4 и 5.

1.2 Кинематический анализ механизма

Цель: определение положения звеньев и траектории движения их точек, определение скоростей и ускорений точек звеньев, а также определение угловых скоростей и угловых ускорений звеньев по заданному закону движения ведущего звена.


1.2.1 Графический метод кинематического анализа

Заключается в построении графиков перемещении, скорости и ускорения последнего звена механизма в функции от времени (построение кинематических диаграмм) и определение их истинных значений.

1.2.1.1 Построение планов положения механизма

Кинематический анализ начинаем с построения плана положения механизма. Для этого должны быть известны:

1) размеры звеньев механизма, м;

2) величина и направление угловой скорости ведущего звена

.

Размеры звеньев механизма равны:

Выбираем масштабный коэффициент длины:

Нулевым положением является крайнее нижнее положение ползуна 5 – начало преодоления силы F п.с.

Построенный план положения механизма представлен на листе №1 графической части курсового проекта.

Длина отрезков, изображающих звенья механизма на чертеже, будут равны:


1.2.1.2 Построение диаграммы перемещений

Диаграмма перемещений пятого звена является графическим изображением закона его движения.

Проводим оси координат (графическая часть, лист №1). По оси абсцисс откладываем отрезок

, представляющий собой в масштабе время Т(с) одного периода (время одного полного оборота выходного звена):

Масштабный коэффициент времени:

Откладываем перемещение выходного звена по оси ординат, принимаем за нулевое – крайнее нижнее положение ползуна. Масштабный коэффициент будет равен:

Построенная диаграмма представлена на листе №1 графической части курсового проекта.

1.2.1.3 Построение диаграммы скорости

Построение диаграммы скорости осуществляется методом графического дифференцирования диаграммы угла поворота (методом хорд).

Н 1 =25 мм – расстояние до полюса графического дифференцирования (Р 1).

Масштабный коэффициент диаграммы угловой скорости:


Построенная диаграмма скорости представлена на листе №1 графической части курсового проекта.

1.2.1.4 Построение диаграммы ускорения

Построение диаграммы ускорения осуществляется методом графического дифференцирования диаграммы угловой скорости.

Н 2 =15 мм – расстояние до полюса графического дифференцирования (Р 2).

Масштабный коэффициент диаграммы углового ускорения:

Построенная диаграмма ускорения представлена на листе №1 графической части курсового проекта.

Истинные значения перемещения, скорости и ускорения приведены в сводной таблице 4.

Таблица 4

№ положения l , м v , м/с a , м/с 2
0 0,00 0,00 14,56
1 0,07 1,02 6,48
2 0,15 0,99 -1,38
3 0,22 0,88 -0,63
4 0,29 0,92 1,64
5 0,36 1,11 2,97
6 0,46 1,33 1,95
7 0,56 1,34 -3,19
8 0,65 0,59 -28,31
9 0,62 -2,69 -35,90
10 0,29 -4,53 0,94
11 0,02 -1,20 19,41

1.2.2 Графоаналитический метод кинематического анализа

1.2.2.1 Построение плана скорости

Исходные данные:

Угловая скорость ведущего звена

1. Абсолютная скорость точки А 1 на конце ведущего звена 1

2. Масштабный коэффициент:

Длинна вектора скорости точки А.

Структурный синтез и анализ механизмов

Основные виды механизмов

Исходя из кинœематических, конструктивных и функциональных свойств, механизмы подразделяют на:

1. Рычажные (рис. 2 а, б) - предназначенные для преобразования вращательного движения входного звена в возвратно-поступательное движение выходного звена. Могут передавать большие усилия и мощности.

2. Кулачковые (рис.2 в, г) - предназначенные для преобразования вращательного или возвратно-поступательного движения входного звена в возвратно-поступательное или возвратно-вращательное движение выходного звена. Придавая профилям кулачка и толкателя соответствующие очертания всœегда можно осуществить любой желательный закон движения толкателя.

3. Зубчатые (рис. 2 е) - образованные с помощью зубчатых колес. Служат для передачи вращения между неподвижными и подвижными осями. Зубчатые передачи с параллельными осями реализуются при помощи цилиндрических зубчатых колес, с пересекающимися осями - при помощи конических зубчатых колес, а со скрещивающимися осями - при помощи червяка и червячного колеса.

4. Фрикционные (рис. 2 д) - движение от ведущего звена к ведомому передается за счет сил трения, возникающих в результате контакта этих звеньев.

Структурным синтезом механизма принято называть проектирование структурной схемы механизма, которая состоит из неподвижного и подвижных звеньев и кинœематических пар. Он является начальной стадией составления схемы механизма, удовлетворяющего заданным условиям. Исходными данными обычно являются виды движения ведущего и рабочего звеньев механизма, взаимное расположение осœей вращения и направления поступательного движения звеньев, их угловые и линœейные перемещения, скорости и ускорения. Наиболее удобным методом нахождения структурной схемы является метод присоединœения структурных групп Ассура к ведущему звену или основному механизму.

Под структурным анализом механизма принято понимать определœение количества звеньев и кинœематических пар, определœение степени подвижности механизма, а также установление класса и порядка механизма.

Степень подвижности пространственного механизма определяется по формуле Сомова - Малышева:

W = 6n-(5P 1 +4P 2 + 3P 3 + 2P 4 + P 5) (1)

где Р 1 , Р 2 , Р 3 , Р 4 , P 5 - число одно-, двух-,трех-, четырех- и пятиподвижных кинœематических пар; n - число подвижных звеньев.

Степень подвижности плоского механизма определяется по формуле Чебышева:

W=3n-2P H - P B (2)

где рн - число низших, а Р в - число высших кинœематических пар.

В качестве примера рассмотрим четырехзвенный механизм рулевого управления автопилота (рис. 3.3): звенья 1 и 2 образуют цилиндрическую пару четвертого класса, имеющую две степени свободы; звенья 2-3 и 4-1 образуют вращательные пары пятого класса, имеющие одну степень свободы; звенья 3-4 образуют шаровую пару третьего класса, имеющую три степени свободы; число подвижных звеньев равно трем, тогда

W = 6 3-2 5-1 4-1 3 = 1

Степень подвижности данного механизма равна 1.

Кинœематическая цепь, число степеней свободы которой относительно элементов ее внешних кинœематических пар равно нулю, называют структурной группой Ассура, по имени Л.В. Ассура, который впервые фундаментально исследовал и предложил структурную классификацию плоских стержневых механизмов. Пример образования плоского шестизвенного механизма дан на рис. 4.

Структурные группы подразделяют по классу и порядку. Класс группы определяется максимальным числом кинœематических пар входящих в одно звено (рис. 5).

Порядок группы определяется числом элементов, которыми группа присоединяется к основному механизму (рис. 6).

Класс и порядок механизма зависят от того, какое звено является ведущим.

Имеют одни и те же методы исследования независимо от области их применения или функционального назначения.

Необходимо знать, что представляет собой структурная группа (группа Ассура), как определяется ее класс, порядок, вид. Желательно запомнить таблицу, показывающую сочетание звеньев и кинематических пар пятого класса в группе:

n группы 2 4 6 8
P 5 группы 3 6 9 12

Решение задачи начинается с определения числа степеней свободы кинематической цепи , положенной в основу данного механизма. В соответствии с числом степеней свободы назначается число начальных звеньев (или входных звеньев), после чего цепь становится механизмом .

После присоединения каждой группы Ассура должен получаться промежуточный механизм , с тем же числом степеней свободы, что и заданный. После присоединения последней группы должен получиться первоначально заданный механизм.

Обратите внимание на то, что класс механизма (а значит и методы его решения) определяются не только схемой механизма, но и тем, какое звено принято в качестве входного. При одной и той же схеме, но при разных входных звеньях, могут получаться разные по классу механизмы, а, значит, и методы их исследования будут различны.

Необходимо отметить также, что наличие в схеме механизма замкнутых контуров не определяет класс механизма, т.к. при разбивке на группы Ассура эти контуры могут распадаться. Но если какой-то контур сохранился в группе Ассура, то он определяет класс этой группы, и через класс группы – класс механизма.

В механизмах могут встретиться двойные и более сложные шарниры , поэтому надо быть внимательным при определении числа степеней свободы, а также при разбивке механизма на группы Аcсура.

Надо иметь в виду следующее:

  • при одной и той же схеме можно получить разные механизмы с точки зрения методов исследования, если задавать в качестве входных различные звенья;
  • из одних и тех же групп Ассура можно составить разные механизмы, с различным функциональным назначением;
  • структурная группа (группа Ассура) обладает одними и теми же свойствами и методами исследования независимо от того, в каком механизме она находится. Это очень важное свойство позволяет разрабатывать методы исследования только для групп Ассура, а не для каждого механизма из их огромного количества;
  • рассматриваемая структурная классификация применима не только для анализа существующих механизмов, но и для целенаправленного синтеза механизмов с предсказуемыми свойствами (путем присоединения к начальному или к начальным механизмам групп Ассура и дальнейшего их наслоения).

При наличии у механизма двух степеней свободы необходимо задать два начальных звена.

Если механизм имеет высшие кинематические пары IV класса, то прежде, чем разбивать механизм на структурные группы, надо произвести замену высших пар цепями с низшими парами , т.к. в группы Ассура входят только пары V класса.

Для последующего анализа целесообразно сравнить число степеней свободы заданного механизма и механизма, полученного после замены высших пар.

В механизме могут встретиться лишние степени свободы. Формула для определения числа степеней свободы дает правильный результат для общего случая, но в частном случае, при определенных размерах звеньев, фактическое число степеней свободы может отличаться от определенного по формуле.

Обычно наличие круглого ролика дает лишнюю степень свободы (его вращение вокруг собственной оси дает механизму дополнительную степень свободы, но это движение не влияет на характер работы остальных звеньев и всего механизма в целом). Поэтому число начальных механизмов надо задавать по действующему числу степеней свободы (W действ. =W расчетн. – W лишн.).

При замене высшей пары лишняя степень свободы автоматически исчезает (поэтому после замены высшей пары новое расчетное значение числа степеней свободы будет равно действующему числу степеней свободы). Это удобно для контроля правильности установления наличия или отсутствия лишних степеней свободы.

В некоторых случаях сложно определить класс групп Ассура, а, соответственно, и механизма по кинематической схеме, т.к. некоторые треугольники вырождаются в прямые линии, стороны контуров могут быть представлены ползунами и т.д. В результате довольно сложно определить наличие замкнутого контура в группе и число его сторон. В таком случае удобно воспользоваться построением структурной схемы механизма (или отдельной группы).

Структурная схема вычерчивается без масштаба, все звенья, входящие в три кинематические пары, изображаются в виде жестких треугольников, звенья, входящие в четыре кинематические пары, – в виде жестких четырехугольников и т.д., все ползуны условно заменяются шарнирами. Таким образом, формируется другой механизм с такой же структурой, но с более наглядной для решения данной задачи схемой. Естественно, что при дальнейшем исследовании рассматривается первоначально заданный механизм.

Структурный синтез и анализ механизмов

Структурный синтез механизма состоит в проектировании его структурной схемы, под которой принято понимать схема механизма, ука­зывающая стойку, подвижные звенья, виды кинœематических пар и их взаимное расположение.

Метод структурного синтеза механизмов, предложенный русским ученым Л. В. Ассуром в 1914 ᴦ., состоит в следующем: механизм должна быть

образован путем наслоения структурных групп к одному или нескольким начальным звеньям и стойке.

Структурной группой (группой Ассура) на­зывается кинœематическая цепь, число степеней свободы которой равно нулю после присоединœения ее внешними кинœематическими па­рами к стойке и которая не распадается на более простые цепи, удовлетворяющие этому условию.

Принцип наслоения иллюстрируется на примере образования 6-звенного рычажного механизма (рис. 1.3).

угол поворота кривошипа (обобщенная координата).

Важно заметить, что для структурных групп плоских механизмов с низшими парами

, откуда ,

где W –число степеней свободы; n – число подвижных звеньев; Р n – число низших пар.

Этому соотношению удовлетворяют следующие сочетания (табл.1.2)

В роли одноподвижных пар выступают низшие пары.

n
P n

Простейшей является структурная группа, у которой n = 2 и P n = 3. Она принято называть структурной группой второго класса .

Порядок структурной группы определяется числом эле­ментов ее внешних кинœематических пар, которыми она может присо­единяться к механизму. Все группы второго класса имеют второй порядок.

Структурные группы, у которых n = 4 и Р n = 6, бывают третьего или четвертого класса (рис. 12.4)

Класс структурной группы в общем случае определяется числом кинœематических пар в замкнутом контуре, образованном внутренними кинœематическими парами.

Класс механизма определяется высшим классом структурной группы, входящей в его состав.

Порядок образования механизма записывается в виде формулы его строения. Для рассмотренного примера (рис.12.3):

механизм второго класса. Римскими циф­рами указывается класс структурных групп, а арабскими – номера звеньев, из которых они образованы. Здесь обе структурные груп­пы относятся ко второму классу, второму порядку, первому виду.

Структурный синтез и анализ механизмов - понятие и виды. Классификация и особенности категории "Структурный синтез и анализ механизмов" 2017, 2018.

mob_info