Строение атома теллура. Теллур. Описание теллура. Свойства теллура Температура кипения теллура

Теллур (лат. Tellurium), Те, химический элемент VI группы главной подгруппы периодической системы Менделеева; атомный номер 52, атомная масса 127,60, относится к редким рассеянным элементам. В природе встречается в виде восьми стабильных изотопов с массовыми числами 120, 122-126, 128, 130, из которых наиболее распространены 128 Те (31,79%) и 130 Те (34,48%). Из искусственно полученных радиоактивных изотопов широкое применение в качестве меченых атомов имеют 127 Те (Т ½ = 105 сут) и 129 Те (Т ½ = 33,5 сут). Теллур открыт Ф. Мюллером в 1782 году. Немецкий ученый М. Г. Клапрот подтвердил это открытие и дал элементу название "теллур" (от лат. tellus, род. падеж telluris - Земля). Первые систематические исследования химии Теллура выполнены в 30-х годах 19 века И. Я. Берцелиусом.

Распространение Теллура в природе. Теллур - один из наиболее редких элементов; среднее содержание в земной коре (кларк) ~1·10 -7 % по массе. В магме и биосфере Теллур рассеян; из некоторых горячих подземных источников осаждается вместе с S, Ag, Au, Pb и других элементами. Известны гидротермальные месторождения Au и цветных металлов, обогащенные Теллуром; с ними связаны около 40 минералов этого элемента (важнейшие - алтаит, теллуровисмутит и другие природные теллуриды). Характерна примесь Теллура в пирите и других сульфидах. Теллур извлекается из полиметаллических руд.

Физические свойства Теллура. Теллур серебристо-белого цвета с металлическим блеском, хрупок, при нагреве становится пластичным. Кристаллизуется в гексагональной системе: а = 4,4570Å; с = 5,9290Å; плотность 6,25 г/см 3 при 20 "С; t пл 450°C; t кип 990 °С; удельная теплоемкость при 20 °С 0,204 кдж/(кг·К) ; теплопроводность при 20 °С 5,999 вт/(м·К) ; температурный коэффициент линейного расширения 1,68·10 -5 (20 °С). Теллур диамагнитен, удельная магнитная восприимчивость при 18 °С -0,31·10 -6 . Твердость по Бринеллю 184,3 Мн/м 2 (18,43 кгс/мм 2). Атомный радиус 1,7 Å, ионные радиусы: Те 2- 2,22 Å, Те 4+ 0,89 Å, Те 6+ 0,56 Å.

Теллур - полупроводник. Ширина запрещенной зоны 0,34 эв. При обычных условиях и вплоть до температуры плавления чистый Теллур имеет проводимость p-типа. С понижением температуры в интервале (-100 °С) - (-80 °С) происходит переход: проводимость Теллура становится n-типа. Температура этого перехода зависит от чистоты образца, и она тем ниже, чем чище образец.

Химические свойства Теллура. Конфигурация внешней электронной оболочки атома Те 5s 2 5p 4 . В соединениях проявляет степени окисления -2; +4; + 6, реже +2. Теллур - химический аналог серы и селена с более резко выраженными металлическими свойствами. С кислородом Теллур образует оксид (II) ТеО, оксид (IV) ТеО 2 и оксид (VI) ТеО 3 . ТеО существует выше 1000 °С в газовой фазе. ТеО 2 получается при сгорании Те на воздухе, обладает амфотерными свойствами, трудно растворим в воде, но легко - в кислых и щелочных растворах. ТеО 3 неустойчив, может быть получена только при разложении теллуровой кислоты. При нагревании Теллур взаимодействует с водородом с образованием теллуроводорода Н 2 Те - бесцветного ядовитого газа с резким, неприятным запахом. С галогенами реагирует легко; для него характерны галогениды типа ТеХ 2 и ТеХ 4 (где X - Cl и Вг); получены также TeF 4 , TeF 6 ; все они легколетучи, водой гидролизуются. Теллур непосредственно взаимодействует с неметаллами (S, Р), а также с металлами; он реагирует при комнатной температуре с концентрированными азотной и серной кислотами, в последнем случае образуется TeSO 3 , окисляющаяся при нагревании до TeOSO 4 . Известны относительно слабые кислоты Те: теллуроводородная (раствор Н 2 Те в воде), теллуристая Н 2 ТеО 3 и теллуровая Н 6 ТеО 6 ; их соли (соответственно теллуриды, теллуриты и теллураты) слабо или совсем нерастворимы в воде (за исключением солей щелочных металлов и аммония). Известны некоторые органические производные Теллура, например RTeH, диалкилтеллуриды R 2 Te - легкокипящие жидкости с неприятным запахом.

Получение Теллура. Теллур извлекается попутно при переработке сульфидных руд из полупродуктов медного, свинцовоцинкового производства, а также из некоторых золотых руд. Основным источником сырья для производства Теллура являются шламы электролиза меди, содержащие от 0,5 до 2% Те, а также Ag, Au, Se, Cu и других элементы. Шламы сначала освобождаются от Cu, Se, остаток, содержащий благородные металлы, Те, Pb, Sb и других компоненты, переплавляют с целью получения сплава золота с серебром. Теллур при этом в виде Na 2 TeO 3 переходит в содовотеллуровые шлаки, где содержание его достигает 20-35%. Шлаки дробят, размалывают и выщелачивают водой. Из раствора Теллур осаждается электролизом на катоде. Полученный теллуровый концентрат обрабатывают щелочью в присутствии алюминиевого порошка, переводя Теллур в раствор в виде теллуридов. Раствор отделяется от нерастворимого остатка, концентрирующего примеси тяжелых металлов, и продувается воздухом. При этом Теллур (чистотой 99%) осаждается в элементарном состоянии. Теллур повышенной чистоты получают повторением теллуридной переработки. Наиболее чистый Теллур получают сочетанием методов химической очистки, дистилляции, зонной плавки.

Применение Теллура. Теллур используют в полупроводниковой технике; в качестве легирующей добавки - в сплавах свинца, чугуне и стали для улучшения их обрабатываемости и повышения механических характеристик; Bi 2 Te 3 и Sb 2 Te 3 применяют в термогенераторах, a CdTe - в солнечных батареях и в качестве полупроводниковых лазерных материалов. Теллур используют также для отбеливания чугуна, вулканизации латексных смесей, производства коричневых и красных стекол и эмалей.

Теллур в организме. Теллур постоянно присутствует в тканях растений и животных. В растениях, произрастающих на почвах, богатых Теллуром, его концентрация достигает 2·10 -4 - 2,5·10 -3 %, в наземных животных - около 2·10 -6 %. У человека суточное поступление Теллур с продуктами питания и водой составляет около 0,6 мг; выводится из организма главным образом с мочой (свыше 80%), а также с калом. Умеренно токсичен для растений и высокотоксичен для млекопитающих (вызывает задержку роста, потерю шерсти, параличи и т. д.).

Профессиональные отравления Теллур возможны при его выплавке и других производственных операциях. Наблюдаются озноб, головная боль, слабость, частый пульс, отсутствие аппетита, металлический вкус во рту, чесночный запах выдыхаемого воздуха, тошнота, темная окраска языка, раздражение дыхательных путей, потливость, выпадение волос.

Теллур – химический элемент относящийся к 16-й группе, находящийся в таблице Менделеева, атомный номер 52 и обозначающийся латинским Те – специальным идентификационным . Элемент относится к металлоидам. Формула теллура 4d10 5s2 5p4.

Теллур – элемент имеющий бело-серебристый оттенок и металлический блеск и хрупкую структуру. При высокой температуре, как и многие металлы, теллур становится пластичным.

Происхождение теллура

Элемент был обнаружен на золотых рудниках, в горах Трансильвании. Человечеству известно не менее ста минералов содержащих теллур. В частности, это серебро, золото, медь и цинк. Существуют различные соединения теллура, к примеру, это некоторые виды охры. В чистом виде, в одном залеже можно обнаружить селен, теллур и серу, что указывает на возможность самородности элемента.

Все упомянутые минералы чаще встречаются в одном месторождении с , серебром, свинцом и висмутом. В промышленных условиях, по большей части теллур выделяется химическим путём из других металлов, несмотря на то, что его основные минералы довольно распространены. В частности, он в достаточном количестве содержится в халькопирите, входящего в состав никелево-медных и медноколчеданных руд.

Дополнительно его можно обнаружить в , молибдените и галените, также он содержится в медных рудах, полиметаллических залежах и свинцово-цинковых залежах. Также эти минералы содержат сульфидные и сурьмяные породы, содержащие кобальт и ртуть.

Преимущественно в промышленности теллур добывается из шлама, который образует электролитическая рафинация меди и свинца. При обработке шлам обжигается, в сгоревших остатках имеется определённое содержание теллура. Для выделения необходимого элемента огарки промываются соляной кислотой.

Чтобы выделить металл из полученного кислотного раствора, сквозь него необходимо пропустить сернистый газ. Полученный таким образом оксид теллура , обрабатывается углём, чтобы получить из него чистый элемент. Для его дальнейшей очистки применяется процедура хлорирования.

При этом образуется тетрахлорид, который необходимо очистить путём дистилляции или ректификации. Далее проводится его гидролизация, а полученный гидроксид теллура восстанавливается водородом.

Применение теллура

Этот металл применяется при изготовлении множества различных (медных, свинцовых, железных), поэтому отрасль металлургии является его основным потребителем. Теллур делает нержавеющую сталь и медь более обрабатываемыми. Также добавление этого элемента в ковкий чугун, придаёт ему положительные свойства серого чугуна.

Улучшаются его литейные качества и обрабатываемость. Он способен заметно улучшить физические свойства свинца, уменьшая отрицательную коррозию от серной кислоты, во время его обработки.

Теллур широко распространён в полупроводниковых устройствах и электронике. В частности, он используется для производства солнечных батарей. Применение теллура открывает широкие перспективы в применении этих передовых технологий. Процент производства подобного оборудования значительно возрос за последние годы. Это привело к заметному росту товарооборота теллура на мировом рынке.

Металл применяется, в том числе в космических технологических разработках, в частности, это сплавы с добавлениями теллура, обладающие уникальными свойствами. Используются они в технологиях обнаружения излучения оставляемых космическими аппаратами.

По этой причине дорогостоящий сплав, в значительной мере востребован в военной промышленности, для слежения за противником в космическом пространстве. Помимо этого смесь селен – теллур входит в состав порошка задержки в капсюлях-детонаторах для взрывных устройств, выпускаемых военными заводами.

Различные соединения теллура используются при производстве соединений полупроводникового характера с многослойной структурой. Многие соединения, включающие в себя теллур, обладают поразительной сверхпроводимостью.

Работает теллур и на благо обывательских нужд. В частности, как подокись металл применяется при производстве компакт-дисков, для создания перезаписываемого тончайшего слоя на них. Также он присутствует в некоторых микросхемах, к примеру, производимых компанией Intel. Теллурид и висмута включён в состав многих термоэлектрических устройств и инфракрасных датчиков.

При окраске керамических изделий также используют этот металл. При изготовлении стекловолокна для информационных коммуникаций (телевидения, интернета и т.д.), участие теллура в производстве кабеля, основывается, на положительном свойстве теллуридов и селенидов увеличивать оптическое преломление при добавлении в стекло.

Вулканизация резины, также подразумевает использование близких металлу веществ – селена или серы, которые могут быть заменены по возможности теллуром. Резина с его добавлением будет демонстрировать гораздо более лучшие качества. Теллур нашёл свою нишу и в медицине – его используют при диагностике дифтерии.

Цена теллура

По потреблению этого редкоземельного металла в мире, Китай стоит на первом месте, Россия на втором, а США на третьем. Общее потребление равняется 400 тоннам металла в год. На продажу теллур обычно идёт в виде порошка, прутков или .

За счёт малых объёмов добычи, в связи с его сравнительно небольшим содержанием в породах, цена на теллур довольна высокая. Приблизительно, если не принимать во внимание постоянные скачки цен на теллур, купить его на мировом рынке можно за 200-300 $ за один килограмм металла. Цена также зависит от степени очистки металла от нежелательных примесей.

Но, несмотря на труднодоступность этого уникального элемента, на него всегда имеется немалый спрос, имеющий постоянные тенденции роста. С каждый годом ширится спектр областей, требующих применения теллура и его соединений.

Проследить за тенденцией роста цен на теллур несложно, сравнив цены в начале 2000 года, когда она равнялась 30$ за 1 кг, и десять лет спустя, когда она дошла до 350$. И несмотря на то, что через год она всё-же упала, имеется серьёзная тенденция роста цен, в связи с падением объёмов производства теллура.

Дело в том, что рынок теллура напрямую зависит от объёма производства , так как теллур является одним из побочных продуктов при её извлечении. На данный момент рынок меди значительно уменьшил свой товарооборот, к тому появились новые технологии её производства, особенности которых значительно повлияют на объём дополнительно получаемого теллура.

Это непременно скажется на его поставках, и естественно расценках. По предположительным данным новый скачок цен ожидается уже через пару лет. Несмотря на то, что у теллура в промышленности имеются определённые аналоги, они не обладают столь ценными свойствами.

Подобная ситуация на мировом рынке, отнюдь не на руку многим производителям, в производстве которых задействован теллур. В частности это производители солнечных батарей, чья продукция в последние годы набирает всё большую популярность.

ОПРЕДЕЛЕНИЕ

Теллур расположен в пятом периоде VI группе главной (А) подгруппе Периодической таблицы.

Относится к элементам p -семейства. Металлоид. Обозначение - Te. Порядковый номер - 52. Относительная атомная масса - 127,60 а.е.м.

Электронное строение атома теллура

Атом теллура состоит из положительно заряженного ядра (+52), внутри которого есть 52 протона и 76 нейтронов, а вокруг, по пяти орбитам движутся 52 электрона.

Рис.1. Схематическое строение атома теллура.

Распределение электронов по орбиталям выглядит следующим образом:

52Te) 2) 8) 18) 18) 6 ;

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 4 .

Внешний энергетический уровень атома теллура содержит 6 электронов, которые являются валентными. Энергетическая диаграмма основного состояния принимает следующий вид:

Валентные электроны атома теллура можно охарактеризовать набором из четырех квантовых чисел: n (главное квантовое), l (орбитальное), m l (магнитное) и s (спиновое):

Подуровень

Примеры решения задач

ПРИМЕР 1

Ответ Сера - 16 по счету элемент Периодической таблицы Д.И. Менделеева. При образовании катионов элемент выступает донором протонов, т.е. общее количество электронов уменьшается, а при образовании анионов - акцептором протонов, т.е. количество увеличивается.

Таким образом, для частиц S +6 , S 0 , S +4 и S -2 общее количество электронов в электронных оболочках будет равно 10, 16, 12 и 18, соответственно. Тогда, таблица примет следующий вид:

ПРИМЕР 2

Ответ При образовании катионов элемент выступает донором протонов, т.е. общее количество электронов уменьшается, а при образовании анионов - акцептором протонов, т.е. количество увеличивается.

Таким образом, для частиц C +4 , Al +3 , F и C 0 общее количество электронов в электронных оболочках будет равно 2, 10, 10 и 6, соответственно. Тогда, таблица примет следующий вид:

Теллур Теллур (лат. Tellurium) это химический элемент с атомным номером 52 в периодической системе и атомным весом 127,60; обозначается символом Te, относится к семейству металлоидов. В природе встречается в виде восьми стабильных изотопов с массовыми числами 120, 128, 130, из которых наиболее распространены 128Тe и 130Тe. Из искусственно полученных радиоактивных изотопов широкое применение в качестве меченых атомов имеют 127Тe и 129Te.


Из истории Впервые был найден в 1782 году в золотоносных рудах Трансильвании горным инспектором Францом Иозефом Мюллером (впоследствии барон фон Рейхенштейн), на территории Австро-Венгрии. В 1798 году Мартин Генрих Клапрот выделил теллур и определил важнейшие его свойства. Первые систематические исследования химии теллура выполнены в 30-х гг. 19 в. И. Я. Берцелиусом.


"Аурум парадоксум" - парадоксальное золото, так называли теллур, после того как в конце XVIII столетия он был открыт Рейхенштейном в соединении с серебром и желтым металлом в минерале сильваните. Неожиданным явлением казался факт, когда золото, обычно всегда встречающееся в самородном состоянии, было обнаружено в соединении с теллуром. Вот почему, приписав свойства, подобные желтому металлу, его назвали желтым металлом парадоксальным.


Происхождение названия Позднее (1798 г.), когда М. Клапрот детальнее исследовал новое вещество, он в честь Земли, носительницы химических "чудес", назвал его теллурием (от латинского слова "теллус" - земля). Это название и вошло в обиход химиков всех стран.


Нахождение в природе Содержание в земной коре 1·10-6 % по массе. Металлический теллур можно встретить разве что в лаборатории, но его соединения можно найти вокруг нас гораздо чаще, чем может показаться. Известно около 100 минералов теллура. Важнейшие из них: алтаит PbTe, сильванит AgAuTe 4, калаверит AuTe 2, тетрадимит Bi 2 Te 2 S, креннсрит AuTe 2, петцит AgAuТе 2. Встречаются кислородные соединения теллура, например ТеО2 теллуровая охра. Встречается самородный теллур и вместе с селеном и серой (японская теллуристая сера содержит 0,17 % Те и 0,06 % Se).


Модуль Пельтье Многие знакомы с термоэлектрическими модулями Пельтье, которые используют в портативных холодильниках, термоэлектрических генераторах и иногда для экстремального охлаждения компьютеров. Основной материал полупроводников в таких модулях это теллурид висмута. В настоящее время это самый ходовой полупроводниковый материал. Если посмотреть сбоку на термоэлектрический модуль, можно заметить ряды маленьких «кубиков».


Физические свойства Теллур серебристо-белого цвета с металлическим блеском, хрупок, при нагреве становится пластичным. Кристаллизуется в гексагональной системе. Теллур - полупроводник. При обычных условиях и вплоть до температуры плавления чистый Теллур имеет проводимость p-типа. С понижением температуры в интервале (100 °С) - (-80 °С) происходит переход: проводимость Теллура становится n-типа. Температура этого перехода зависит от чистоты образца, и она тем ниже, чем чище образец. Плотность = 6,24 г / см ³ Температура плавления = 450°C Температура кипения = 990°C Теплота плавления = 17,91 кДж/моль Теплота испарения = 49,8 кДж/моль Молярная теплоемкость = 25,8 Дж/(K·моль) Молярный объем = 20,5 см³/моль


Теллур – неметалл. В соединениях теллур проявляет степени окисления: -2, +4, +6 (валентность II, IV, VI). Химически теллур менее активен, чем сера и кислород. Теллур устойчив на воздухе, но при высокой температуре горит с образованием двуокиси TeO 2. С галогенами Те взаимодействует на холоде. При нагревании реагирует со многими металлами, давая теллуриды. Растворим в щелочах. При действии азотной кислоты Те превращается в теллуристую, а при действии царской водки или 30%-ной перекиси водорода – в теллуровую кислоту. Химические свойства 128 Те))))) е = 52, р = 52, n = е 8е 8е 8е 6е


Физиологическое действие При нагревании Теллур взаимодействует с водородом с образованием теллуроводорода - H 2 Te бесцветного ядовитого газа с резким, неприятным запахом. Теллур и его летучие соединения токсичны. Попадание в организм вызывает тошноту, бронхиты, пневмонию. Предельно допустимая концентрация в воздухе колеблется для различных соединений 0,0070,01 мг/м³, в воде 0,0010,01 мг/л.


Получение Основной источник шламы электролитического рафинирования меди и свинца. Шламы подвергают обжигу, теллур остается в огарке, который промывают соляной кислотой. Из полученного солянокислого раствора теллур выделяют, пропуская через него сернистый газ SO 2. Для разделения селена и теллура добавляют серную кислоту. При этом выпадает диоксид теллура ТеО 2, а H 2 SeO 3 остается в растворе. Из оксида ТеО 2 теллур восстанавливают углем. Для очистки теллура от серы и селена используют его способность под действием восстановителя (Al) в щелочной среде переходить в растворимый дителлурид динатрия Na 2 Te 2: 6Te + 2Al + 8NaOH = 3Na 2 Te 2 + 2Na. Для осаждения теллура через раствор пропускают воздух или кислород: 2Na 2 Te 2 + 2H 2 O + O 2 = 4Te + 4NaOH. Для получения теллура особой чистоты его хлорируют Te + 2Cl 2 = TeCl 4. Образующийся тетрахлорид очищают дистилляцией или ректификацией. Затем тетрахлорид гидролизуют водой: TeCl 4 + 2H 2 O = TeO 2 + 4HCl, а образовавшийся ТеО 2 восстанавливают водородом: TeO 2 + 4H 2 = Te + 2H 2 O.



Те - хим. элемент VI группы периодической системы элементов; ат. н. 52, ат. м. 127,60. Блестящее серебристо-серое хрупкое вещество с металлическим блеском. В соединениях проявляет степени окисления -2, +4 и +6. Природный В состоит из восьми стабильных изотопов с массовыми числами 120,122-126, 128 и 130. Известны 16 радиоактивных изотопов с периодом полу-распада от 2 до 154 дней. Наиболее распространены тяжелые с массовыми числами 128 и 130. Т. открыл (1782) венг. исследователь Ф. Мюллер фон Рейхенштейн. Теллур относится к рассеянным редким элементам, его содержание в земной коре 10-7%. Содержится во многих минералах с золотом, серебром, платиной, медью, железом, свинцом, висмутом, в сульфидных минералах. Кристаллическая решетка Т. гексагональная с периодами а - 4,4570 А и с = 5,9290 А. Плотность (т-pa 20р С) 6,22 г/см3; /пл 449,5° С; tкип 990±2° С.

Известна «аморфная» модификация Теллура (порошок темно-коричневого цвета), необратимо переходящая в кристаллическую при нагревании. Температурный коэфф. линейного расширения поликристаллического Т. (16-17) 10-6 град-1,у коэфф. теплопроводности (т-ра 20° С) 0,014 кал/см X X сек х град; удельная теплоемкость (т-ра 25° С) 0,048 кал/г х град. Т.- полупроводник с шириной запрещенной зоны 0,34 эв. Электропровод-ность Т. зависит от чистоты и степени совершенства кристалла. В наиболее чистых образцах она равна ~0,02 ом-1 х см-1 . Подвижность электронов 1700, подвижность дырок 1200 см2/в х сек. При плавлении Теллур переходит в металлическое состояние. Теллур диамагнитен, удельная магнитная восприимчивость - 0,3 10-6 см3/г (при комнатной т-ре). Твердость по шкале Мооса 2,0-2,5; ср. микротвердость 58 кгс/мм2 , модуль норм, упругости 4200 кгс/мм2, коэфф. сжимаемости (т-ра 30° С) 1,5-10 6 см2/кгс. Монокристаллы Теллура с ориентацией по (0001) хрупко разрушаются при напряжении 14 кгс/мм2.

По хим. св-вам Т. напоминает серу я. , но менее активен. При комнатной т-ре не окисляется на воздухе, при нагревании сгорает с образованием двуокиси Те02 - белого кристаллического , мало растворимого в воде. Известны также ТеО и Те03, менее устойчивые, чем Те02. При обычных условиях Теллур очень медленно взаимодействует с водой с выделением водорода и образованием ной серной к-те с образованием раствора TeS03 красного цвета; при разбавлении водой протекает обратная реакция с выделением теллура. Т. растворяется в азотной к-те с образованием теллуристой к-ты Н2Те03, в разбавленной соляной к-те растворяется слабо.

В щелочах теллур растворяется медленно. С водородом образует теллуристый Н2Те - бесцветный газ с неприятным запахом, конденсирующийся при т-ре -2° С и затвердевающий при т-ре -51,2° С, нестойкое соединение, легко разлагающееся под действием даже слабых окислителей. Стабильных при обычных условиях сульфидов Теллур не образует, соединение TeS2 устойчиво при т-ре до -20° С. С селеном Т. образует непрерывные твердые растворы. Известны состава ТеХв (только фторид), ТеХ4 и ТеХ2, к-рые получают непосредственным взаимодействием элементов. При комнатной т-ре все - твердые , частично разлагающиеся водой; только TeFe - бесцветный газ с неприятным запахом. При нагревании Т. реагирует со многими металлами, образуя .

Сырьем для получения Теллура служат шламы медноникелевого и сернокислотного произ-ва, а также продукты, получаемые при рафинировании свинца. Анодные шламы перерабатывают кислотным или щелочным способом, переводя Т. в четырехвалентное состояние и затем восстанавливая его сернистым газом из растворов в концеитриров. соляной к-те либо электролитически. Кроме того, материалы, содержащие Т., можно перерабатывать хлорным методом. Теллур высокой чистоты получают сублимацией и зонной перекристаллизацией (наиболее эффективный способ глубокой очистки, позволяющий получать вещество чистотой 99,9999%).

Соединения Теллура токсичны, их действие на организм человека подобно действию соединений селена и мышьяка. Наиболее сильным ядом является теллуристый . Предельно допустимая концентрация Т. в воздухе 0,01 мг/мв, Т. применяют при вулканизации каучука, в произ-ве свинцовых кабелей (добавка до 0,1% Те улучшает мех. св-ва свинца). Соединения Т. используют в стекольной пром-сти (для окраски стекла и фарфора) и в фотографии. Широкое применение получил Теллур в синтезе полупроводниковых соединений. Соединения Т.- основной материал для произ-ва термоэлементов.

Теллур относится к рассеянным элементам (содержание их в земной коре составляет 1 ⋅ 10 ⁻ ⁷ % . Теллур редко образует самостоятельные . Обычно он встречается в природе в виде примесей к сульфидам, а также в самородной сере. Основными источниками теллура и селена служат отходы сернокислого производства, накапливающиеся в пылевых камерах, а также осадки (шламы) , образующиеся при электролитической очистке меди. В шламе, в числе других примесей, содержится также селенид серебра Ag 2 Se и некоторые . При обжиге шлама образуются оксид теллура TeO 2 , а также оксиды тяжёлых металлов. Теллур восстанавливается из оксидов TeO 2 при действии на них сернистого газа в водной среде:

TeO 2 + H 2 O = H 2 TeO 3

H 2 SeO 3 + 2SO 2 + H 2 O = Se + 2H 2 SO 4

Теллур, как и , образует аллотропические модификации — кристаллический и аморфный. Кристаллический теллур — серебристо — серого цвета, хрупок, легко растирается в порошок. Его электропроводность незначительна, но при освещении увеличивается. Аморфный теллур — коричневого цвета, менее устойчив, чем аморфный и при 25 град. переходит в кристаллический.

По химическим свойствам теллур имеет значительное сходство с серой. Он горит на воздухе (зеленовато — синим) , образуя соответствующие оксиды TeO 2 . В отличие от SO 2 оксид теллура является кристаллическим веществом и плохо растворим в воде.

Теллур непосредственно с водородом не соединяется. При нагревании взаимодействует с многими металлами, образуя соответствующие соли () , например K 2 Te . Теллур даже при обычных условиях реагирует с водой:

Te + 2H 2 O = TeO 2 + 2H 2

Как и селен, теллур окисляется до соответствующих кислот H 2 TeO 4 , но при более жёських условиях и действии других окислителей:

Te + 3H 2 O 2 (30%) = H 6 TeO 6

В кипящих водных растворах щелочей теллур, подобно сере, медленно растворяется:

3Te + 6KOH = 6K 2 Te + K 2 TeO 3 + 3H 2 O

Теллур употребляется главным образом, как полупроводниковый материал.

Свойства теллура

Теллуроводород может быть получен действием на теллуриды разбавленными кислотами:

Na 2 Te + H 2 SO 4 = Na 2 SO 4 + H 2 Te

Теллуроводород при нормальных условиях представляет собой бесцветный газ с характерными неприятными запахами (более неприятный чем запах H 2 S , но более ядовит, а теллуроводород менее ядовит) . Гидриды теллура проявляют восстановительные свойства в большей степени, чем , а H 2 Te в воде примерно такая же как и у сероводорода. Водные растворы гидридов обнаруживают явно выраженную кислую реакцию вследствие диссоциации их в водных растворах по схеме:

H 2 Te ↔ H + HTe ⁺

H + Te ² ⁺

В ряду O — S — Se — Te радиусы их ионов Э ² ⁺ удерживать ион водорода. Это подтверждается опытными данными, что подтвердило теллуроводородная кислота является более сильной чем сероводородная кислота.

В ряду O — S — Se — Te способность к термической диссоциации гидридов увеличивается: труднее всего разложить воду при нагревании, а гидриды теллура неустойчивы и разлагается даже при слабом нагревании.

Соль теллуроводородной кислоты (теллуриды) по своим свойствам близки к сульфидам. Их получают подобно сульфидам, действием теллурводорода на растворимые соли металлов.

Теллуриды сходен с сульфидами в отношении растворимости в воде и в кислотах. Например, при пропускании теллурводорода через водный раствор Cu 2 SO 4 получается теллурид меди:

H 2 Te + CuSO 4 = H 2 SO 4 + CuTe

С кислородом Te образует соединения TeO 2 и TeO 3 они образуются при сгорании теллура на воздухе, при обжиге теллуридов, также при сжигании гидридов теллура:

Te + O 2 = TeO 2

2ZnTe + 3O 2 = 2ZnO + 2TeO 2

2H 2 Te + 3O 2 = 2H 2 O + 2TeO 2

TeO 2 — кислотные оксиды (ангидриды) . При растворении в воде образуют, соответственно, теллуристую кислоту:

TeO 2 + H 2 O = H 2 TeO 3

Эта кислота диссоциирует в водном растворе несколько слабее, чем сернистая кислота. Теллуристая кислота в свободном виде не получена и существует только в водных растворах.

В время как соединения серы со степенью окисления 4+ в химических реакциях преимущественно выступают в качестве восстановителей, с повышением степени окисления серы до 6 + , TeO 2 и соответствующие им кислоты проявляют главным образом окислительные свойства, восстанавливаясь соответственно до Te . Эти способом на практике получают теллур в свободном виде:

H 2 TeO 3 + 2SO 2 + H 2 O = 2H 2 SO 4 + Te

Восстановительные свойства теллуристая кислота проявляет лишь при взаимодействии с сильными окислителями:

3H 2 TeO 3 + HClO 3 = 3H 2 TeO 4 + HCl

Свободная теллуровая кислота H 2 TeO 4 — обычно выделяется в виде кристаллогидрата H 2 TeO 4 2H 2 O которую записывают как H 6 TeO 6 . В ортотеллурной кислоте H 6 TeO 6 атомы водорода способны частично или полностью замещаться атомами металлов, образуя соли Na6TeO6 .

mob_info