Самый простой частотомер на attiny2313. Самодельный частотомер на ATTINY2313. Основные технические характеристики

Особенностью первой схемы частотомера на микроконтроллере AVR является то, что она работает вместе с компьютером и подсоединена к материнской плате через разъем IRDA. От этого же разъема конструкция получает питание. Вторая схема частотомера базируется на микроконтроллере Attiny2313 и способна измерять частоту до 10 мГц. Третья рассмотренная конструкция частотомера построена на базе легендарной платы Arduino, основа которой также микроконтроллер AVR.

Схема частотомера состоит из микропроцессора Attiny2313 и двоичного счетчика 74AC161. Входящий сигнал для усиления следует на транзистор VT1, затем с его коллекторного вывода он поступает на вход «С» двоичного счётчика. Контроль за работой счетчика закреплен за МК Attiny2313, который осуществляет обнуление, останавливает или запускает счет путем подачи управляющего сигнала на десятый вывод.


Непродолжительной подачей логического нуля на вход сброса двоичного счётчика, МК обнуляет его, а после этого, отправляет уровень логической единицы на входе ЕР, запускает его работу. Затем, он считает импульсы с выхода старшего разряда счетчика в течение полусекунды.

Частотомер на микроконтроллере AVR. Сигналы данных на компьютер идут с порта PD6 Attiny2313. Линия порта РВ1 используется для сигналов синхронизации следующие от компьютера.

В начальный момент времени МК генерирует стартовый импульс продолжительностью около 1,6 мкс после чего идет пауза. Программа время от времени обращается к порту 2F8H и при регистрации байта, инициирует передачу синхроимпульсов. Данные синхроимпульсы пойдут при отправке числа ноль в инфракрасный порт компьютера. Состав импульсов: Первый бит стартовый и 8 бит число ноль.

При обнаружении уровня логической единицы, микроконтроллер начинает передачу, отправляя 1-й стартовый импульс устанавливая логическую единицу на линии данных и дожидается спада по линии синхронизации, для того чтобы было можно отправить импульсы данных. Если бит данных нулевой, то выставляется "1" .

Так как скорости передачи и приёма одинаковы, это позволяет получить независимость от заданной скорости ИК порта компьютера.

Фъюзы для программы Ponyprog и сама прошивка доступна по зеленой ссылке чуть выше.

В этом простом проекте частотомера, контроллер Arduino считывает напряжение, затем высчитывает его частоту и посылает данные через USB UART в компьютер, на котором необходимо установить программу считывания и визуализации данных, приложение и скетч в архиве для скачки.

Плата Arduino генерирует точную односекундную временную основу для счетчика с помощью каскадирования двух таймеров timer0 и timer2. Связь между цифровыми входами 3 и 4 соединяет выход таймера 2 (250 Гц) со входом таймера 0. Программный код ожидает, когда выход таймера 0 станет положительным, и начинает отсчет частоты входного сигнала таймером 1. Timer1 – это 16-разрядный таймер, он переполняется при достижении значения 2 16 , после этого, изменяется значение регистра переполнения overF. В конце первой секунды записывается 16-разрядный регистр. Затем Arduino отправляет на ПК 6 байтов данных. Схема подключения к Arduino простая, и ее можно,посмотреть на фото ниже.

Сначала Arduino необходимо подсоединить к компьютеру, а только потом запустить приложение на Visual Basc 6. Приложение ищет Com-порт, отправляя байты и ожидает их обратное принятие. Это занимает пару секунд. Приложение должно быть обязательно отключено, в тот момент когда вы прошиваете плату через Arduino IDE. Частотный вход платы Ардуино представляет собой уровни сигнала TTL, при слабом сигнале необходимо добавить усилитель.

Частотомер с хорошими характеристиками, позволяющий измерять частоты от 1Гц до 10 МГц (9,999,999) с разрешением в 1 Гц во всем диапазоне. Идеален для функиональных генераторов, цифровых шкал или как отдельное устройство. Дешев и легок в изготовлении, собран из доступных деталей, имет небольшой размер и может быть смонтирован на панели многих устройств.

Схема состоит из семи 7-сегментных индикаторов, AVR ATtiny2313 и нескольких транзисторов и резисторов. AVR делает всю работу, и дополнительные микросхемы не нужны. Микроконтроллер считает количество импульсов, пришедших на его вход за 1 секунду и отображает это число. Сама важная вещь - это очень точный таймер, и он реализован на 16-битном Timer1 в режиме CTC. Второе, 8-битный счетчик работает как Counter0 и считает импульсы на входе T0. Каждые 256 импульсов он вызывает прерывание, в котором программа увеличивает множитель. Когда мы получаем 1-секундное прерывание, содержимое множителя умножается на 256 (сдвиг влево на 8 бит). Остаток импульсов, которые посчитал счетчик записывается в регистр и добавляется к результату умножения. Это значение затем разбивается на отдельные цифры, которые отображаются на индикаторах. После этого, перед выходом из 1-секундного прерывания, оба счетчика одновременно сбрасываются и измерение начинается заново. В свободное от прерывания время контроллер занимается динамической индикацией.

Разрешение и точность:
Точность зависит от тактового генератора. Кварц должен быть хорошего качества и иметь как можно меньший ppm (допуск). Будет лучше, если частота будет кратна 1024, например, 16 МГц или 22.1184 МГц. Для измерения частоты до 10 МГц, надо использовать кварц не меньше, чем на 21 МГц, например, 22.1184 МГц. Частотомер может измерять частоту до 47% от частоты собственного кварца. Если есть хороший промышленный частотомер, то можно откалибровать схему добавлением подстроечного конденсатора (1пФ-10пФ) между одним из выводов кварца и землей, и подстроить частоту в соответствии с показаниями промушленного частотомера.

В архиве с исходниками есть несколько вариантов под разные кварцы, но вы можете скомпилировать свой вариант.

Форма сигнала:
В принципе, устройство понимает любую форму сигнала от 0 до 5V, не только прямоугольные импульсы. Синусоида и теугольные импульсы сичтаются по заднему фрону при переходе его ниже 0.8V.

В устройстве нет защиты от превышения входного напряжения выше 5 вольт.

Устройство имеет высокоомный вход и не нагружает тестируемую схему – вы даже можете измерить частоту переменного тока в сети 220 вольт, прикоснувшись ко входу пальцем. Частотомер может быть переделан для измерения частоты до 100 МГц с шагом 10 Гц путем добавления на вход быстродействующего делителя.

Дисплей:
Использовано семь семисегментных индикаторов с общим анодом в режиме динамической индикации. Если яркость получается недостаточной, можно уменьшить значения токоограничивающих резисторов, но нужно помнить, что максимальный импульсный ток каждого вывода микроконтроллера составляет 40 мA . По умолчанию сопротивление резисторов 100 Ом. Незначащие нули гасятся програмно. Значения обновляются каждую секунду.

Печатная плата:
Двусторонняя печатная плата размером 109mm x 23mm – к сожалению, 7 индикаторов не влезли в рабочее пространство бесплатной версии Eagle, поэтому они нарисованы от руки. На плате нужно сделать 3 соединения проводом - первое - соединение питания и вывода VCC контроллера – это соединение показано на слое silkscreen. Два других соединяют десятичные точки индикаторов с резисторами на 330 Ом расположенными на слое bottom. Сверху платы расположен коннектор Atmel ISP-6. Контакт 1 первый со стороны кварца. Этот коннектор необязателен и нужен только для программирования контроллера. Индикаторы должны припаиваться на некотором расстоянии от платы, чтобы можно было подлезть паяльником к выводам, припаиваемым с верхней стороны платы.

Построенный . Он позволяет измерять частоты до 10 МГц в четырех автоматически переключаемых диапазонах. Наименьший диапазон имеет разрешение 1 Гц.

Технические характеристики частотомера

  • Диапазон 1: 9,999 кГц, разрешение 1 Гц.
  • Диапазон 2: 99,99 кГц, разрешение до 10 Гц.
  • Диапазон 3: 999.9 кГц, разрешение до 100 Гц.
  • Диапазон 4: 9999 кГц, разрешение до 1 кГц.

Описание частотомера на микроконтроллере

Микроконтроллер Attiny2313 работает от внешнего кварцевого генератора с тактовой частотой 20 МГц (это максимально допустимая частота). Точность измерения частотомера определяется точностью данного кварца. Минимальная длина полупериода измеряемого сигнала должна быть больше, чем период кварцевого генератора (это связано с ограничениями архитектуры микроконтроллера ATtiny2313). Следовательно, 50 процентов от тактовой частоты генератора составляет 10 МГц (это максимальное значение измеряемой частоты).

Установка фьюзов (в PonyProg):

Очень полезный и несложный прибор, который просто незаменим в творческой лаборатории радиолюбителя, можно сделать на МК PIC16F628A. Для измерения частот до 30 Мгц и предназначен данный цифровой частотомер на распространённой микросхеме-контроллере PIC16F628A. Его принципиальная схема состоит из базового модуля, с подключенным к его счетному входу входным формирователем. Схема частотомера приведена на рисунке ниже:

Данный измерительный прибор может использоваться в двух режимах - цифровая шкала и измеритель частоты. При включении питания, частотомер переходит в тот режим, в котором он работало до последнего выключения питания. Если это был режим частотомера - в левом разряде индикатора высветится режим частотомера "F.". Так-же в младшем разряде индикатора высветится "0". Частотомер автоматически перейдет в режим измерения частоты и будет находиться в режиме ожидания. При подаче на вход какого-то сигнала, признак режима частотомера "F." гасится и индикатор отобразит значение измеряемой частоты в килогерцах.
Схема входного формирователя частотомера - цифровой шкалы, приведена на рисунке:


Если на момент включения питания, на входе частотомера присутствует измеряемый сигнал, то, после включения питания, признак работы частотомера "F.", высветится в течение 1-й секунды, а затем погаснет.
Для того чтобы перейти на время измерения 0,1 сек. или 10 сек., необходимо нажать либо кнопку № 1, либо одновременно нажать кнопку № 1 и кнопку № 2 соответственно (см. раскладку клавиатуры для режима частотомера), затем дождаться изменения положения десятичной точки, после чего отпустить кнопку (кнопки). Если после этого необходимо вернуться к времени измерения 1 сек., то необходимо нажать кнопку № 2 и дождаться изменения положения десятичной точки, после чего отпустить кнопку. Для любого времени измерения десятичная точка отмечает килогерцы.


Раскладка клавиатуры режима частотомера

Кнопка № 1 0,1 сек. Переход на время измерения 0,1 сек.
Кнопка № 2 1 сек. Переход на время измерения 1 сек.
Кнопка № 1 +
кнопка № 2 10 сек. Переход на время измерения 10 сек.
(кнопки нажимаются одновременно)

Если перед выключением питания происходила работа в режиме цифровой шкалы, то при следующем включении питания будет установлен именно этот режим, а внутри режима цифровой шкалы будет установлен именно тот подрежим ("минус ПЧ" или "плюс ПЧ"), в котором происходила работа до последнего выключения питания. Признаки подрежимов цифровой шкалы ("L." или "H." соответственно) будут постоянно высвечиваться в левом разряде индикатора. При отсутствии сигнала на входе цифровой шкалы, индикатор будет показывать значение записанной в память контроллера промежуточной частоты, а при его наличии - результат вычитания или сложения частоты сигнала, присутствующего на входе цифровой шкалы, и значения промежуточной частоты, записанной в энергонезависимую память PIC контроллера.


Режим цифровой шкалы имеет 4 подрежима.
- При нажатии на кнопку № 1 происходит переход в подрежим "минус ПЧ".
- При этом, в левом разряде индикатора, высветится признак подрежима "L.".
- При нажатии на кнопку № 2 происходит переход в подрежим "плюс ПЧ".
- При этом, в левом разряде индикатора, высветится признак подрежима "H.".

В процессе "прошивки" контроллера, в его энергонезависимую память записывается значение промежуточной частоты = 5,5 мГц., но потом может будет самостоятельно записать в нее любое значение и использовать ее в качестве промежуточной. Для этого надо подать на вход ЦШ внешний сигнал с частотой, которая далее будет использоваться в качестве промежуточной. Проконтролировать значение этой частоты можно, перейдя в режим частотомера.

Раскладка клавиатуры режима цифровой шкалы:
Кнопки Время измерения Пояснения
Кнопка № 1 "минус ПЧ" Промежуточная частота вычитается из
измеряемой частоты
Кнопка № 2 "плюс ПЧ" Промежуточная частота суммируется с
измеряемой частотой
Кнопка № 1 +
кнопка № 2 Установка ПЧ Запись в оперативную память значения
измеряемой частоты (ПЧ)
Повторно:
Кнопка № 1 +
кнопка № 2 Запись ПЧ Копирование значения измеряемой частоты из оперативной памяти в энергонезависимую с целью дальнейшего ее использования в качестве промежуточной


При смене режима работы, меняется раскладка клавиатуры. Если кнопка № 1 находится в нажатом состоянии меньше определенного времени, то переключения в другой режим не происходит и кнопка № 1 может либо устанавливать время измерения 0,1 сек. (в режиме частотомера), либо включать подрежим "минус ПЧ" (в режиме цифровой шкалы). Если этот порог превышен, происходит переключение в другой режим. Величина этого порога - около 4 сек., и этот интервал времени отсчитывается с момента окончания цикла счета, приходящегося на момент нажатия кнопки № 1.


Снизить энергопотребление схемы частотомера можно, увеличив номиналы резисторов, соединяющих выводы порта В с индикатором. В своей конструкции использовал 9-разрядный светодиодный индикатор от советского телефона с АОН, с общим катодом и красным цветом свечения. В моем частотомере, кроме питания от сети, имеется также и батарейное питание (аккумуляторы). Печатная плата устройства приведена на рисунке:


Прошивки для микроконтроллера PIC16F84A, а также полный текст статьи на контроллере качаем тут. Схему испытал - ZU77.

Частотомер на микроконтроллере ATtiny2313 . Схема отличается простотой и надежностью. Частотомер позволяет измерять частоты до 65 кГц. Программа для микроконтроллера написана на BascomAVR. Отображение частоты на дисплее 16*2. Напряжение питания устройства от 5 до 9 вольт.

Счет импульсов происходит путем подсчитывания импульсов по нарастающему фронту на ноге 9 (PD.5/T1 и вход таймера Timer1). Для защиты входа от перенапряжения включены два диода 1N4148 и резистор на 10кОм. Отображение происходит на любой дисплей 16*2 , но обязательно с контроллером HD44780 или аналогичным KS066.

Программа написана на бэйсике в среде BascomAVR. Демо версия имеет ограничение по размеру кода в 4 Кб, чего вполне достаточно. Скачать BascomAVR с официального сайта разработчика. В программе используются два таймера: таймер0 для отсчета фиксированных интервалов времени, в нашем случае 1 секунда(можно поэкспериментировать с этим значением), а таймер1 считает пришедшие импульсы за это время. Стоит отметить, что счет импульсов будет вестись только в том случае, если уровень сигнала на ноге 9 будет соответствовать уровню лог. "1" (порядка 3-5 вольт). Timer0 работает на частоте тактирования микроконтроллера т.е 8МГц, делитель тактовой частоты не включён.

mob_info