Проходческие щиты: описание, назначение. Горизонтальное бурение. Проходческие щиты Прямоугольный проходческий щит

ПРОХОДЧЕСКИЙ ЩИТ (а. tunnelling shield; н. Vortriebsschield; ф. bouclier d"avancement; и. escudo) — временная передвижная металлическая призабойная крепь , под защитой которой проводятся основные процессы проходческого цикла. Впервые проходческий щит применён в 1825 при строительстве транспортного тоннеля под рекой Темза в Лондоне. Наиболее эффективно использование проходческого щита при проведении выработок в слабоустойчивых обводнённых породах.

Современные проходческие щиты имеют, как правило, круговую (цилиндрическую), реже прямоугольную, арочную и другие формы поперечного сечения. В конструкции проходческого щита различают ножевую (переднюю), опорную (основную) и хвостовую части. В ножевой части осуществляется разработка породы; в опорной — размещается оборудование и щитовые домкраты для передвижения щита. Под защитой хвостовой части производится возведение постоянной крепи выработки. Передвигаются проходческие щиты по мере выемки породы в забое чаще всего путём отталкивания от ранее установленной постоянной крепи гидродомкратами, расположенными по периметру опорной части щита. В проходческий щит могут монтироваться: механизм разработки забоя (рабочий орган); устройство для погрузки горной массы на внутрищитовой перегружатель для последующей перегрузки в вагонетки , на конвейер либо иные средства внутришахтного (тоннельного) транспорта; механизм установки постоянной, как правило, блочной (тюбинговой) крепи или подачи за опалубку бетонной смеси.

В зависимости от способа разработки забоя проходческие щиты подразделяют на механизированные и немеханизированные. К механизированным относят щиты, оснащённые различными рабочими органами, разрушающими породу (рис.), чаще всего штанговыми, экскаваторными, планетарными, с гидромеханическим разрушением , активными горизонтальными площадками.

Применяют также специальные проходческие щиты, в т.ч. с закрытой головной частью для сооружения горных выработок в особо сложных горно-геологических условиях. Отличительная особенность немеханизированных проходческих щитов — отсутствие какого-либо специального породоразрушающего органа. В этом случае для разработки забоя используют отбойные молотки, другой ручной инструмент или заострённую головную часть щита, вдавливаемую в породную толщу.

По размерам поперечного сечения различают 3 группы щитов: малые — до 10 м 2 , средние — 10-16 м 2 ; большие — свыше 16 м 2 . Деление проходческих щитов по этому показателю в определённой степени соответствует и их классификации по назначению выработок. Малые щиты чаще всего используют при строительстве городских коллекторов (коллекторные щиты); средние — для шахтных выработок (горные щиты) и для гидротехнической целей; большие — при строительстве железнодорожных, автодорожных тоннелей и метрополитенов , капитальных выработок шахт , а также крупных гидротехнических тоннелей . На строительстве шахт в Подмосковном угольном бассейне проходческим щитом пройдено в сложных гидрогеологических условиях свыше 20 км магистральных штреков (1987). Протяжённость возводимых с помощью проходческих щитов коллекторных тоннелей в , как правило, в обводнённых песчаных и глинистых породах покровных отложений около 70 км в год. Щиты используют при строительстве участков перегонных, эскалаторных и станционных тоннелей в сложных горно-геологических условиях (до 10 км в год). Средние темпы проведения коллекторных тоннелей малых размеров 70-90 м в месяц, рекордные скорости превышают 700 м/месяц. Соответствующие значения этих же показателей для больших проходческих щитов на проходке перегонных тоннелей более 60-70 м в месяц и 1240 м (готового тоннеля) в месяц (Ленинградский метрополитен).

ВВЕДЕНИЕ

Горнопроходческий щит (рисунок 1) - это подвижная конструкция, находящаяся в голове строящегося туннеля и обеспечивающая безопасную разработку породы в забое, погрузку ее на внутритуннельный транспорт и возведение крепи (обделки). Проходческие щиты бывают немеханизированные (разработка породы ведется вручную) и механизированные. Проходческие щиты все в большей степени превращаются в проходческие комплексы. Они обычно имеют круглое поперечное сечение, но бывают прямоугольными, эллиптическими, подковообразными, в т. ч. незамкнутыми. По размеру щиты условно разделяют на щиты большого (более 7 м), среднего (от 7 до 5 ж) и малого сечения (менее 5м). Выполняются проходческие щиты, как правило, металлическими и могут использоваться в любых горногеологических условиях, однако наиболее эффективны они в мягких грунтах. Проходческие щиты для лучшей управляемости должны обладать необходимой маневренностью, характеризуемой, в частности, отношением длины к поперечному размеру.

Рисунок 1 - Горнопроходческий комплекс Herrenknecht-10690

Впервые проходческий щит был применен в Великобритании М.И. Брюнелем при сооружении тоннеля под рекой Темзой (1825). С их помощью сооружено большинство тоннелей метрополитенов в Москве, Петербурге, Киеве и других городах.

Диаметр получаемых тоннелей может варьироваться от 1 до 19 м. Самый большой диаметр, 19 м, у четырёх проходческих щитов, используемых в настоящее время на строительстве железнодорожного Готардского тоннеля в Швейцарии.

Для создания тоннелей малого диаметра применяется горизонтальное бурение - длина до 2 км, диаметр до 1,2 м

ПРИМЕНЕНИЕ ПРОХОДЧЕСКИХ ЩИТОВ

Рабочие органы существующих проходческих щитов воздействуют на забой в основном способами вдавливания, резания или комбинированным способом. Способ вдавливания эффективен в сыпучих (песчаных) и мягокопластичных связных (глинистых и илистых) грунтах.

Вдавливание выполняется головной частью, состоящей из ножевого кольца и режущих полос или диафрагмы с окнами, через которые грунт в виде осыпей или брикетов поступает внутрь проходческого щита. При проходке в сыпучих грунтах режущие полосы делаются в виде горизонтальных и наклонных полок, объединенных между собой вертикальными ребрами. Применение проходческих щитов среднего сечения с горизонтальными полками снижает стоимость 1 пог. м туннеля и позволяет проходить в месяц до 400 пог.м. Способ резания в забое эффективен в устойчивых связных грунтах, особенно в плотных глинах и сланцах. Для резания применяются в основном роторные, планетарные и фрезерные рабочие органы. Наиболее часто используются роторные органы, режущие породу по круговым траекториям с помощью резцов, закрепленных на радиальных лучах. Пространство между лучами используется для направления срезаемой породы внутрь проходческого щита среднего сечения с горизонтальными полками и доступа политена в Москве и Киеве. Основной вал рабочего органа самостоятельно перемещается на забой со скоростью 5-7 мм/мин.

Для улучшения доступа к забою и получения высокого крутящего момента в некоторых проходческих роторный орган выполняется в виде цилиндрического корпуса с шестерней большого диаметра и радиальными лучами. В Англии успешно применяются при проходке в кембрийских глинах Лондонского метрополитена щиты диаметром 4,27 и 3,9 м с роторным рабочим органом в виде цилиндрического корпуса (барабана), оснащенного шестью внешними радиальными и внутренними диаметральными лучами, снабженными резцами.

Роторный орган был успешно применен в машинах США при проходке туннеля диаметром 7,5-7,9 м в мягких трещиноватых глинистых сланцах. При проходке Ленинградского метрополитена в кембрийских глинах успешно использован проходческий щит с планетарным рабочим органом из 6 дисков, размещенных на крестообразном водиле, к кольцу которого прикреплены 12 ковшей, захватывающих грунт. Другой щит с планетарным органом мощностью 110 кет в виде 2 дисков, закрепленных на водиле, применен при проходке туннеля Московского метрополитена в перемежающихся карбонных глинах и известняках с пределом прочности при сжатии до 300 кг /см2. С таким же щитом строится Тбилисский метрополитен в песчаниках и аргиллитах с пределом прочности при сжатии 450-630 кг/см2.

Для выборочной разработки забоя Проходческие щиты снабжаются фрезерным рабочим органом, основным элементом которого является головка, смонтированная на штанге и снабженная резцами. В Проходческом щите ПЩМ-4 диаметром 4,09 м головка включает 2 резцовые коронки диаметром 350 и 600 мм, вращающиеся в разные стороны. Штанга с рабочей головкой, закрепленная шарнирно в диафрагме, установленной перед опорным кольцом проходческого щита, с помощью гидравлических домкратов перемещается и по вертикали, и по горизонтали, а головка, кроме того, выдвигается относительно корпуса штанги. Разработанный грунт падает вниз и с помощью загребающих лап грузится на пластинчатый питатель, проходящий через центральное отверстие вала блокоукладчика.

При фрезерном органе иногда может быть применен комбинированный способ воздействия на забой, с разработкой центральной части забоя рабочим органом, а периферийной - ножевым кольцом проходческого щита. В чистом виде комбинированный способ заложен в проходческий щит диаметром 2,56 м, снабженном фрезерной головкой, вращающейся от двигателя в 20 кет со скоростью 10 об/мин и обладающей, одной степенью свободы в направлении продольной оси щита.

В водонасыщенных песках при условии водопонижения или применения сжатого воздуха используются проходческие щиты с горизонтальными полками.

При гидростатическом давлении, превышающем 3 aтм., могут применяться герметические проходческие щиты с диафрагмой, пространство перед которой заполнено водой, выполняющей роль гидропригрузки.

Отбор грунта в виде пульпы из забоя осуществляется гидроэлеваторами или землесосными установками.

Разработка забоя может производиться гидроструей, которая подается из насадки, или с помощью рабочего органа, напр. в виде однолучевого бара, снабженного цепью с режущими зубьями. Особенностью щита является создание крепи из монолитного прессованного бетона. Помимо поступательно перемещающихся проходческих щитов, известны так называемые вращающиеся щиты.

Проходческие щиты в последнее время начали применять и для открытого способа проходки. В частности, открытый щит шириной 9,02 м, высотой 8,2 м и длиной 13,8 ж был использован при проходке в глинистых грунтах двухпутного перегонного туннеля Фрунзенского радиуса Московского метрополитена. Головная часть щита образована двумя боковыми вертикальными стенками и лобовой стенкой ломаного очертания.

Отбор грунта из пределов головной части на глубину до 7,3 м осуществлялся с помощью экскаватора, оборудованного обратной лопатой и ковшом емкостью 1,4 м3, а установка замкнутых секций обделки в хвостовой части велась козловым краном.

Все механизированные проходческие щиты являются специализированными и каждый из них имеет достаточно узкую область наиболее эффективного использования в определенных горногеологических условиях.

В то же время необходимо создать универсальные механизированные проходческие щиты для проходки в широком диапазоне мягких грунтов (от рыхлых песчаных до плотных глинистых) с быстро изменяющимся способом воздействия на забой, обеспечивающим устойчивость забоя при изменении угла естественного откоса грунта от 90 до 40°, минимальное усилие для внедрения щита в грунт и свободный доступ к забою.

Проходческий щит, оснащённый специальным породоразрабатывающим агрегатом, называется механизированным (рис. 6.1.).

Рис. 6.1. Принципиальная схема механизированного проходческого щита:

1-корпус щита; 2-исполнительный орган механизированного щита; 3-привод исполнительного органа;

4-щитовой гидродомкрат; 5-щитовой транспортёр; 6-домкрат подачи исполнительного органа на забой

Основными элементами механизированного проходческого щита являются: корпус 1, исполнительный (иногда называемый рабочим) орган 2, предназначенный для механизированной разработки грунта в забое и удаления его из зоны щита. Работа исполнительного органа обеспечивается за счёт привода 3.

В процессе проходки тоннеля механизированный проходческий щит должен выполнять следующие основные функции:

1. Разработка грунта в забое и удаление его за пределы щита для последующей погрузки в транспортные средства.

2. Крепление контура выработки и обеспечение устойчивости лба забоя.

3. Обеспечение безопасного возведения обделки тоннеля.

Как следует из выше сказанного, механизированная разработка грунта в забое является основной функцией механизированного проходческого щита. При создании механизированных щитов можно пойти по двум различным направлениям. Первое – попытка создания механизированного проходческого щита способного работать практически во всех инженерно-геологических условиях, и второе – создание щита, предназначенного для проходки тоннеля в весьма ограниченном диапазоне инженерно-геологических условий.

В первом случае достижение цели практически невыполнимо и даже теоретические рассуждения приводят к убеждению, что если создание такого щита возможно, то его конструкция будет очень сложной и дорогостоящей. Во втором варианте будет сильно ограничена возможность применения проходческого щита, так как встретить трассу тоннеля с неизменяющимися условиями практически невозможно.

В связи с этим, создание механизированных проходческих щитов пошло по пути разработки конструкций пригодных для какой-либо группы грунтов, обладающих близкими физико-механическими характеристиками, благодаря чему можно разработать единую конструкцию исполнительного органа и систему крепления грунта в забое.

7. Механизированные щиты для глинистых грунтов

7.1. Механизированные проходческие щиты для сооружения тоннелей в мягких пластичных глинистых грунтах

К названной группе грунтов можно отнести пластичные супеси, суглинки и глины (спондиловые, юрские, майкопские) с коэффициентом крепости f = 0,7 – 1,0 и даже перемятые глинистые мергели с f = 1,0 – 1,5.

Такие грунты легко разрабатываются резанием, причём резцами пластинчатого типа, однако устойчивость лба забоя необходимо обеспечивать за счёт конструкции исполнительного органа. Поэтому для проходки тоннелей в мягких пластичных глинах разработаны щиты, исполнительный орган которых, оснащённый пластинчатыми резцами, практически постоянно находится прижатым к забою, обеспечивая его устойчивость.

Конструкция щита с роторным дисковым исполнительным органом представлена на рисунке 7.1.

Рис. 7.1. Конструкция механизированного щита с роторным дисковым исполнительным органом:

    выходной вал привода; 2-исполнительный орган; 3-пластинчатые резцы; 4-копир-резец;

5-ролики для опоры исполнительного органа; 6-подшипник; 7-привод исполнительного органа;

8-подшипник скольжения вала; 9-гидродомкрат подачи исполнительного органа;

10-горизонтальная площадка; 11-ленточный транспортёр; 12-балки

Рассматриваемый щит получил название «Киевский», так как был разработан для проходки перегонных тоннелей Киевского метрополитена в пластичных спондиловых глинах. Исполнительный орган 2 выполнен в виде сплошной стальной планшайбы, сваренной из отдельных листов. Через прорези в планшайбе к забою выступают пластинчатые резцы 3, которыми при вращении исполнительного органа срезается стружка пластичной глины толщиной до 20 мм. Конструкция пластинчатого резца киевского щита показана на рисунке 7.2. Срезанный грунт через прорези в планшайбе попадает внутрь исполнительного органа и удаляется оттуда при помощи щитового транспортёра 11. Вращение исполнительного органа обеспечивается приводом 7, установленным на горизонтальной перегородке 10 опорного кольца. Для подачи исполнительного органа на забой служит гидравлический домкрат 9.

Рис. 7.2. Конструкция пластинчатого резца:

    стальной лист диафрагмы; 2-корпус резца; 3-болтовое

крепление резца к корпусу; 4-пластинчатый резец

В зависимости от степени пластичности разрабатываемых грунтов существует несколько режимов работы щита с роторным дисковым исполнительным органом, оснащённым пластинчатыми резцами.

В достаточно устойчивых грунтах (f=1,0-1,5) в первую очередь производится резание грунта с выдвижением исполнительного органа домкратом подачи на глубину до 50 см при неподвижном щите. Затем резание грунта прекращается и производится передвижка щита в разработанное пространство, после чего процесс повторяется. Передвинувшись таким образом на 1 метр, (то есть на ширину кольца сборной обделки) можно приступать к монтажу очередного кольца обделки.

В менее устойчивых грунтах (f=0,8-1,0) резание грунта при неподвижном щите происходит на глубину до 25 см, после чего резание продолжается с одновременной подвижкой щита на забой. В это время шток домкрата подачи упруго осаживается. В таком режиме забой продвигается ещё на 10 см, а корпус щита приходит в исходное положение относительно исполнительного органа. Для разработки забоя на глубину достаточную для монтажа очередного кольца обделки описанный цикл повторяется трижды.

При проходке тоннеля в слабоустойчивых грунтах (f=0,7-0,8) основной особенностью в работе щита является то, что исполнительный орган разрабатывает грунт в забое, диаметр которого меньше диаметра щита. Кроме того исполнительный орган не должен выходить за пределы ножевого кольца. Таким образом, резание грунта осуществляется с подачей планшайбы в сторону забоя на глубину до 20 см, но без входа из-под защиты ножевого кольца. Проходка останавливается и начинается передвижка щита, во время которой осуществляется подрезание кольцевого слоя грунта недоработанного исполнительным органом. После выполнения необходимого числа описанных циклов приступают к возведению обделки.

Форма поперечного сечения проходческого щита зависит от формы поперечного сечения сооружаемого тоннеля. Современные проходческие щиты имеют самые разнообразные формы поперечного сечения: круглую, прямоугольную, подковообразную, эллиптическую, двух- или трёхсводчатую и другие. Исторически сложилось так, что преимущественное применение имеют щиты кругового очертания, что объясняется возможностью применения сборной обделки из минимального количества типов элементов и использования достаточно простой кинематической схемы исполнительного органа механизированного проходческого щита. Поэтому знакомство с основными элементами проходческих щитов, их функциональным назначением и конструкцией будет происходить на примере щитов круговой формы с диаметром, соответствующим диаметру перегонного тоннеля метрополитена. Такие щиты условно относятся к щитам среднего диаметра (рис. 3.1.).

Рис. 3.1. Общий вид проходческого щита:

    опорное кольцо; 2-ножевое кольцо; 3-вертикальная перегородка;

4-выдвижная платформа; 5-горизонтальная перегородка; 6-платформенный

домкрат; 7-забойный домкрат; 8-накладка; 9-оболочка; 10-щитовой домкрат;

11-опорная пята щитового домкрата

Несущую конструкцию щита составляют жёстко соединённые между собой ножевое и опорное кольца, а также горизонтальные и вертикальные перегородки. Конструкция основных элементов щитов больших и средних диаметров проектируется сборной из литых или сварных стальных элементов.

Конструкция ножевого кольца проектируется аналогично конструкции чугунной тюбинговой обделки и состоит из10-18 элементов (рис. 3.2.).

Рис. 3.2. Конструкция ножевого кольца проходческого щита:

1-нормальные элементы; 2-скошеные элементы; 3-ключевой элемент; 4-аванбек;

5-кольцевая шпонка; 6-ребро жёсткости

В каждом элементе ножевого кольца устраиваются продольные рёбра жёсткости, располагающиеся напротив щитовых домкратов.

В пределах ножевого кольца немеханизированных щитов при помощи вертикальных и горизонтальных перегородок создаются рабочие площадки, с которых ручным механизированным инструментом ведётся разработка грунта в забое и осуществляется его крепление. Для предохранения забоя от вывалов грунта в верхней части ножевого кольца устраивается выдвижной козырёк (аванбек).

В механизированных проходческих щитах в пределах ножевого кольца располагается исполнительный орган для механизированной разработки грунта.

Опорное кольцо состоит из такого же числа элементов, что и ножевое, соединяемых между собой болтами (рис. 3.3.).

Рис. 3.3. конструкция опорного кольца проходческого щита:

а- расположение элементов в кольце; б- продольный разрез элемента;

1-нормальные элементы; 2-скошенные элементы; 3-ключевой элемент

Для совместной работы ножевого и опорного кольца помимо болтовых связей между ними в элементах опорного кольца устраивается кольцевой паз, в который плотно входит кольцевая шпонка ножевого кольца.

На большей части наружной поверхности опорного кольца имеется выемка, в которую входят листы хвостовой оболочки. В дальних от забоя кольцевых полках опорного кольца имеются отверстия, соответствующие наружному диаметру щитовых домкратов.

Опорное кольцо непосредственно примыкает к ножевому и предназначено для размещения в его пределах силовой и пускорегулирующей аппаратуры, щитовых домкратов и других механизмов и оборудования.

Хвостовая оболочка щита представляет собой конструкцию, собираемую из лекальных стальных листов, соединяемых между собой накладками с болтами. При помощи оболочки в хвостовой части щита создаётся ограждённая зона, в которой осуществляется возведение обделки. Оболочка может быть однослойной или многослойной, то есть состоять их двух или трёх слоёв стальных листов толщиной 18=20 мм, отвальцованных по нужному диаметру (рис. 3.4.).

Рис. 3.4. Конструкция хвостовой оболочки проходческого щита:

а- сечение по опорному кольцу и оболочке; б- вид сбоку; в- сечение по оболочке;

1-стальной лист; 2-накладка; 3-опорное кольцо

Однослойная оболочка крепится только к опорному кольцу, в многослойной оболочке к опорному кольцу крепятся все слои, а наружный – ещё и к ножевому.

К элементам несущей конструкции щита относятся горизонтальные и вертикальные перегородки. Кроме того, установкой перегородок во внутреннем пространстве щита создаются рабочие ячейки в пределах ножевого кольца немеханизированного щита и площадки для установки необходимого оборудования и механизмов в опорном кольце. Перегородки в ножевом кольце механизированных щитов не устанавливаются.

Перегородки изготавливаются из стальных листов толщиной 18-20 мм и крепятся к рёбрам жёсткости ножевого или опорного кольца при помощи болтов (рис. 3.5.). В пределах ножевого кольца перегородки – трёхслойные, в опорном кольце они одно- или двухслойные.

Рис. 3.5. Конструкция перегородок проходческого щита:

    перегородка опорного кольца; 2-перегородка ножевого кольца

Горизонтальные перегородки в несущей конструкции щита выполняют функции затяжек, а вертикальные – распорок. Как правило, роль вертикальных перегородок в статической работе щита при расчётах не учитывается, что идёт в запас прочности.

Важным элементом проходческих щитов являются щитовые домкраты, при помощи которых происходит передвижение щита. Щитовые домкраты – это гидравлическая машина двойного действия, штоки которой имеют прямой и обратный ход. Эти домкраты располагаются по периметру опорного кольца в соответствии с конструкцией применяемой обделки.

В немеханизированных щитах для обеспечения работы проходчика в забое устраиваются выдвижные платформы (рис. 3.6.), перемещаемые на забой при помощи платформенных домкратов.

Рис. 3.6. Конструкция выдвижной платформы:

    стальной лист; 2-уголок; 3-ребро жёсткости; 4-швеллер; 5-платформенный домкрат

Крепление забоя в таких щитах производится при помощи забойных домкратов, устанавливаемых на вертикальных перегородках щита.

Тяжкий ручной труд - в далеком прошлом. Сегодня для прокладки тоннелей метро используются полностью автоматизированную сверхпрочную конструкцию под названием «проходческий щит». Наверное, ее можно сравнить со «стальным червем», который просверливает путь в толще породы, оставляя за собой готовый тоннель. Тяжкий ручной труд - в далеком прошлом. Сегодня для прокладки тоннелей метро используются полностью автоматизированную сверхпрочную конструкцию под названием «проходческий щит». Наверное, ее можно сравнить со «стальным червем», который просверливает путь в толще породы, оставляя за собой готовый тоннель.

Кстати, по легенде, изобретатель первого в мире «проходческого щита» англичанин Марк Брунель действительно придумал такую конструкцию после того, как пригляделся к «работе» обыкновенного корабельного червя, когда служил на флоте. Он заметил, что голова моллюска покрыта жесткой раковиной, помощью зазубренных краев которой червь буравил дерево, оставляя за собой на стенках хода гладкий защитный слой извести


Идея машины, которая в разы упростила прокладку тоннелей, оформилась в конструкцию в 1817 году, когда русский император Александр I обратился к Брунелю с просьбой спроектировать тоннель под Невой в Санкт-Петербурге. Правда, в России инженеру поработать так и не удалось - император в конечном итоге решил возвести в намеченном месте мост

Тем не менее, в 1818 году первый щит Брунеля был запатентован, а в 1825 году с его помощью началось строительство тоннеля под Темзой.


В первой машине грунт выбирали сразу 36 шахтёров, располагавшихся каждый в своей ячейке. После выемки грунта на несколько сантиметров щит сдвигали немного вперёд. Это была непростая работа, учитывая постоянно просачивающуюся воду (дно реки располагалось всего в нескольких метрах выше сводов этого двойного тоннеля). Несколько наводнений в забое унесли жизни семи рабочих, а однажды чуть не погиб сын Брунеля. Более того, на подземной стройке не раз вспыхивал болотный газ. И всё же работа завершилась триумфом. В первый же день после открытия удивительного сооружения через туннель прошли 15 тысяч человек. С тех пор Великобритания заслуженно считается пионером щитовой проходки, а сам щитовой метод в специальной литературе получил название "лондонский".


В нашей стране в метростроении проходческий щит был впервые использован в 1934 году для проходки сложного участка первой очереди московского метро между Театральной площадью и Лубянкой



А при строительстве второй очереди московского метро на трассах одновременно уже работало 42 щита - рекорд по объему используемой техники. С тех пор по этой технологии сооружено более 70% метротоннелей столицы, то есть все станции неглубокого заложения. Московские строители первыми в мире с помощью тоннелепроходческих щитов стали прокладывать наклонные тоннели.


На первых щитах, как уже отмечалось, грунт выбирался рабочими вручную с помощью отбойного молотка и удалялся через уже построенный тоннель на вагонетках. Для движения щита вперед использовались винтовые домкраты, которые упирались в готовый участок тоннельной обделки и толкали машину вперед.


Размеры тоннелей росли, совершенствовалась и конструкция «червя»: в передней его части появились горизонтальные площадки, которые позволили рабочим разрабатывать грунт одновременно с двух (а иногда и более) ярусов. Однако из-за большого количества ручного труда и частых аварий скорость проходки оставляла желать лучшего.

Значительно ускорило процесс использование сборной обделки из крупных элементов - первоначально - чугунных тюбингов. Гигантские кольца, формирующие тоннели, стали собирать из нескольких элементов


Следующим этапом «эволюции» тоннелепроходческих комплексов стала разработка конструкций с так называемым "грунтопригрузом". При работе такого щита порода подается сначала в герметичную камеру, из которой грунт по принципу «мясорубки» удаляется с помощью шнекового конвейера.

Сегодня тоннели строятся в самых сложных инженерно-геологических условиях, и современные щиты рассчитаны на проходку тоннелей в различных грунтах, в том числе и в неустойчивых. Комплексы работают в два цикла: сначала разрабатывают грунт, затем возводят обделку, производя монтаж блоков. Средняя скорость «проходки» щитов сегодня - 80-100 м в месяц, средняя стоимость - 20 млн евро.


В метро нужны и наклонные тоннели - для эскалаторных зон. По заказу Мосметростроя канадская фирма Lovat разработала и изготовила тоннелепроходческий комплекс с наружным диаметром 11 м для прокладки эскалаторных тоннелей. Используя агрегат, столичные метростроевцы первыми в мире совершили щитовую проходку тоннеля для эскалаторов. Это произошло на станции «Марьина Роща».

Кстати, будни метростроителей вовсе не лишены романтики: когда-то Ричард Ловат, основатель всемирно известной фирмы-изготовителя тоннелепроходческих щитов LOVAT, решил, что все комплексы, произведенные его компанией, будут носить женские имена в честь покровительницы подземных работ Святой Барбары. С его легкой руки родилась традиция - присваивать щитам женские имена. Вот почему в Москве трудятся «Клавдия», «Катюша», «Полина» и «Ольга».

Немного о «щитовых» рекордах: самый большой в мире тоннелепроходческий комплекс - это машина диаметром 19 метров, которая за месяц может прокладывать 250-300 метров тоннеля в два яруса, вмещающих четыре полосы автодороги и линию метро. Стоит такое гигантское чудо техники 60-100 млн. евро.

И все же лидерство в использовании тоннелепроходческих комплексов принадлежит Москве. В столице щит компании Herrenknecht диаметром 14,2 м успешно завершил проходку первого в России совмещенного автометротоннеля по трассе Звенигородского проспекта под Серебряным Бором. Из 2,5 км трассы 1,5 пройдены щитовым способом.


Сегодня подземная Москва превратилась в огромную стройку - уже к 2015 году в мегаполисе планируется построить более 70 км линий метро. Тоннели для нового московского метро роют более 20 огромных комплексов - «кротов», обеспечивая высокую скорость и качество работы - и армия этих незаменимых машин будет пополняться, чтобы к 2020 году протяженность линий метрополитена выросла в 1,5 раза - до 451,2 км.

При подготовке материала использованы фотографии блогеров livejournal: Александра "Russos" Попова, Вадима Махорова и Николая «Stomaster».

mob_info