Кухонный таймер на ATmega8. Трехканальный термостат, терморегулятор, таймер на ATmega8 Работа таймера и функции кнопок

Этот таймер предназначен для установки выдержек от 5 секунд до 100 минут. На его выходе имеется достаточно мощное электромагнитное реле, позволяющее коммутировать ток до З0А при напряжении 12V и ток до 10А при напряжении 220V. Благодаря применению электромагнитного реле таймер может управлять не только нагревательными или осветительными приборами, но и электронными приборами, критичными к форме питающего переменного напряжения. Трансформаторное питание, в сочетании с реле, обеспечивает полную гальваническую развязку электронной схемы таймера от сети.

Для общения таймера с оператором есть четырехразрядный светодиодный индикатор, в нем очень старые 7-сегментные матрицы АЛ304 в количестве четырех штук, соединены в матрицу путем соединения вместе одноименных сегментных выводов. Конечно можно использовать и более современные светодиодные индикаторы, и даже готовые матрицы по четыре разряда под динамическую индикацию.

Управляют таймером кнопками S1, S2, S3, S4. При нажатии кнопки S1 происходит включение нагрузки и запуск таймера. Чтобы установить время, в течение которого должна работать нагрузка, нужно нажать S4.На дисплее будут мигать два старших разряда (минуты). Теперь кнопками S2 и S3 можно установить значение минут. Затем нужно еще раз нажать S4. Теперь будут мигать младшие разряды и кнопками S2 и S3 можно установить секунды. Чтобы сохранить установки нужно еще раз нажать S4. Теперь индикатор будет показывать установленную выдержку. Чтобы запустить таймер нужно нажать S1. Нагрузка включается, а показания индикатора начинают убывать. Как только заданное время иссякнет на индикаторе появляется надпись «OFF», а нагрузка выключается электромагнитным реле. Чтобы повторить нужно дважды нажать кнопку S1. При первом нажатии «OFF» сменится на показание заданного времени, а при втором произойдет запуск таймера. Управление реле по выводу 23 D1. Включение - логической единицей. Ключ на VT5 и VT6 управляет электромагнитным реле К1. Такие реле используются в схемах автомобильных сигнализаций. Они могут коммутировать как постоянный ток (12V) так и переменный (220V), поскольку обладают хорошей изоляцией.

Источник питания выполнен на маломощном трансформаторе. Поскольку вторичная обмотка трансформатора имеет отвод от середины (12-0-12), то выпрямитель сделан не по мостовой, а по двухполупериодной схеме на двух диодах VD2 и VD3. Если трансформатор будет с обмоткой 12V без отводом, то нужен выпрямительный мост. Реле питается непосредственно с выхода выпрямителя, а остальная схема через стабилизатор А1 напряжения 5V.

При прошивке нужно задать на работу с внутренним генератором 8 МГц.

Схема собрана на покупной макетной печатной плате, на её одной стороне расположены микросхема и другие детали, а кнопки и индикаторы на другой стороне. Трансформатор питания за пределами платы.

ранзисторы КТ315 можно заменить на КТ3102 или любые аналоги. Транзистор КТ815 можно заменить на КТ817, КТ604. Диод КД521 - практически любой аналог. Диоды в выпрямителе КД209 - любые диоды выпрямительные на постоянный ток не ниже 150 мА. Интегральный стабилизатор 7805 можно заменить любым 5-вольтовым, например, КР142ЕН5А. Или сделать стабилизатор по параметрической схеме на двух транзисторах и стабилитроне на 5V. По поводу индикаторов сказано выше. Это могут быть любые семисегментные индикаторы с общим анодом(катодом).

Файлы прошивок

19.02.2011 5.58 KB 2317

Таймер разработан для включения нагрузки в одно время и выключения в другое, т.е. работа нагрузки в определенных рамках времени.

В конструкции применены часы реального времени PCF8583 в связке с резервной часовой батареей для работы часов при отсутствии питания. В качестве мозга устройства применен микроконтроллер Atmega8 с тактированием 16MHz.
Питание устройство планировалось от зарядки телефона – поэтому на схеме нет стабилизатора 5В – есть разъем питания 5В и питание 220В для БП.
Нагрузка коммутируется реле – с указанным на схеме типом до 10А.
На схеме присутствует 3 светодиода:
OPTIONS – загорается при попадании в настройки часов.
TIME – мигает когда таймер работает — не горит когда таймер деактивирован.
OUT – показывает состояние реле – включено или отключено.
Кнопки:
SW1 – кнопка H .
SW2 – кнопка M .
Настройки:
Настройка часов.
Чтобы настроить часы нужно зажать кнопку SW1 до загорания светодиода OPTIONS .
Точка загорается и не мигает – кнопкой SW1 устанавливаются часы, а кнопкой SW2 минуты.


Чтобы выйти из настроек нужно также подержать кнопку SW1 пока не погаснет светодиод OPTIONS .
Настройка таймера.
Для настройки таймера нужно в режиме отображения(дежурный режим – основной) установить кнопками SW1 – время включения нагрузки, SW2 – время выключения нагрузки. После набора таймера он сам перейдет в режим отображения времени если кнопки не будут нажаты в течении 2-3 секунд.


Деактивация таймера.
Для деактивации таймера нужно зажать и подержать кнопку SW2 – устройство включит нагрузку и таймер не будет её отключать.
Схема.


На схеме применен нестандартный ISP разъём:
1 – VCC
2 – MOSI
3 – MISO
4 – SCK
5 – RESET
6 – GDN.

Печатные платы.



На печатной плате применен индикатор с общим анодом E40361 – но можно и другой со схожей распиновкой и размерами.

Немного 3D-моделей.






Таймер обратного отсчёта поможет вам точно отмерять интервал времени в диапазоне от 1 секунды до 24 часов.

Сегодня никого не удивишь конструкцией таймера, т.к. в продаже и в интернете подобных устройств, сколько угодно. И все таймеры вроде бы похожи друг на друга. И когда более подробно начинаешь рассматривать функции схемы, находишь в ней какие либо неудобства для себя.

Вот из этих соображений я и сделал программу таймера, который отвечает следующим параметрам:

– компактная конструкция и простая схемотехника;

– оперативное кнопочное управление;

– при управлении кнопками, дублирование действий на ЖКИ;

– задание времени с точностью до секунды;

– диапазон отсчета от 1 секунды до 24 часов;

– функция старт, пауза;

– функция сброса отсчета и выставленных значений времени;

– при достижении значения 00.00.00, включается исполнительное устройство;

Все поставленные задачи были реализованы в этом проекте.

Описание режимов работы таймера

После включения таймера, можно выставлять время, которое нам требуется. Назначение кнопок видно на схеме. После установки, нажимаете кнопку СТАРТ-пауза отсчет начинается. Максимальное выставляемое время 23.59.59.

Коррекция времени отсчета может быть произведена в любой момент работы таймера, после подачи питания на схему.

Как только время достигает 00.00.00, – включается светодиод (в данный момент это имитация включения исполнительного устройства или просто можно пищалку с генератором).

Если при его работе таймера нажать кнопку старт-ПАУЗА, таймер остановит отсчет, двойное нажатие кнопки СТАРТ-пауза приводит к возобновлению остановленного отсчета.

Чтобы выключить нагрузку после включения, нужно нажать СБРОС, данные таймера установятся 00.00.01 – нагрузка выключиться. Или выставить новый период отсчета и двойное нажатие кнопки СТАРТ-пауза.

Отображение на ЖКИ символов < ! > означает, что нагрузка отключена (PD3) и при однократном нажатии кнопки СТАРТ начнется обратный отсчет установленного времени.

Кварц внешний 8 MHz, для точности счета.

Для программатора в PonyProg и CodeVisionAVR нужно убрать все галочки с настройки тактового генератора.

После прошивки программатором фьюзов от внешнего кварца, контроллер будет читаться программатором только с кварцем.

Внимание! Что касается FUSE-битов. Это основной источник ошибок, приводящих к залочиванию контроллера.

– CKSEL3…0 должны быть НЕзапрограммированы.

В PonyProg и CodeVisionAVR стоят так:

ЖК должен быть на базе контроллера HD4480

16х1, для него в архиве имеется прошивка V-1

или 8х2, в архиве прошивка V-2.

Работу схемы можно протестировать в proteus’е.

Если при симуляции проекта в proteus’е некорректно отображаются символы кириллицы на ЖКИ, то для правильного отображения кириллицы на ЖК индикаторе распаковать библиотеку LCDrus .zip (приложена в архиве проекта) в папку models proteus’а.

В этом уроке мы поговорим о таймерах.

Данная тема непосредственно связана с темой тактирования микроконтроллера. Поэтому рекомендую перед прочтением данного урока ознакомиться с предыдущим.

Итак, зачем нам таймер?

При построении проектов на микроконтроллерах очень часто возникает необходимость измерение точных временных промежутков. Например, желание мигать светодиодом с определенной частотой, или опрашивать состояние кнопки с необходимыми временными промежутками.

Решить поставленные задачи помогают именно таймеры. Но таймеры микроконтроллеров AVR не знают что такое секунда, минута, час. Однако они прекрасно знают, что такое такт! Работают они именно благодаря наличию тактирования контроллера. То есть, таймер считает количество тактов контроллера, отмеряя тем самым промежутки времени. Допустим, контроллер работает при тактовой частоте 8МГц, то есть когда таймер досчитает до 8 000 000, пройдет одна секунда, досчитав до 16 000 000, пройдет 2 секунды и так далее.

Однако, тут возникает первое препятствие. Регистры то у нас 8 битные, то есть досчитать мы можем максимум до 255, а взяв 16 битный таймер, мы, досчитаем максимум до 65535. То есть за одну секунду мы должны обнулить таймер огромное количество раз! Конечно, можно заняться этим, если больше заняться нечем. Но ведь просто измерять время, используя мощный микроконтроллер совсем не интересно, хочется сделать нечто большее. Тут нам на помощь приходит предделитель. В общем виде это промежуточное звено между таймером и тактовой частотой контроллера. Предделитель облегчает нашу задачу позволяя поделить тактовую частоту на определенное число, перед подачей её на таймер. То есть установив предделитель на 8, за 1 секунду наш таймер досчитает до 1 000 000, вместо 8 000 000 (Разумеется, при частоте тактирования контроллера 8МГц). Уже интереснее, не так ли? А поделить мы можем и не только на 8, но и на 64 и даже на 1024.

Теперь настало время собрать схему, настроить наш таймер, предделитель, и сделать уже хоть что-то полезное!

А делать мы сегодня будем “бегущие огни” из светодиодов. То есть поочередно будем зажигать 3 светодиода, с периодом 0.75 секунды (То есть время работы одного светодиода 0.25 секунды). Соберем следующую схему:

Номиналы резисторов R 1-R 3 рассчитайте самостоятельно.

Далее, рассмотрим регистры отвечающие за работу таймеров. Всего AtMega 8 имеет в своем составе 3 таймера.Два 8 битных(Timer 0,Timer 2) и один 16 битный(Timer 1).Рассматривать будем на примере 16 битного таймера 1.

Пара регистров 8 битных регистров TCNT 1H и TCNT 1L , вместе образуют 16 битный регистр TCNT 1. Данный регистр открыт как для записи, так и для чтения. При работе таймера 1, значение данного регистра при каждом счете изменяется на единицу. То есть в регистре TCNT 1 записано число тактов, которые сосчитал таймер. Так же мы можем записать сюда любое число в диапазоне от 0 до 2 в 16 степени. В таком случае отсчет тактов будет вестись не с 0, а с записанного нами числа.

Регистр TIMSK отвечает за прерывания, генерируемые при работе таймеров микроконтроллера. Прерывание – обработчик специального сигнала, поступающего при изменении чего либо . Любое прерывания микроконтроллера может быть разрешено или запрещено. При возникновении разрешенного прерывания, ход основной программы прерывается, и происходит обработка данного сигнала. При возникновении запрещенного прерывания, ход программы не прерывается, а прерывание игнорируется. За разрешение прерывания переполнения счетного регистра TCNT 1 таймера 1 отвечает бит TOIE 1(Timer 1 Overflow Interrupt Enable ).При записи 1 в данный бит прерывание разрешено, а при записи 0 – запрещено. Данное прерывание генерируется таймером 1 при достижении максимального значения регистра TCNT 1. Подробнее о прерываниях поговорим в следующем уроке.

Регистр TCCR 1B отвечает за конфигурацию таймера 1. В данном случае битами CS 10-CS 12 мы задаем значение предделителя согласно следующей таблицы.

Остальные биты пока нас не интересуют.

Так же существует регистр TCCR 1A , который позволяет настроить другие режимы работы таймера, например ШИМ, но о них в отдельной статье.

А теперь код на C :

#define F_CPU 16000000UL #include #include uint8_t num=0; ISR(TIMER1_OVF_vect) { PORTD=(1<2) { num=0; } TCNT1=61630;//Начальное значение таймера } int main(void) { DDRD|=(1<

#define F_CPU 16000000UL

#include

#include

uint8_t num = ;

ISR (TIMER1_OVF_vect )

PORTD = (1 << num ) ;

num ++ ;

if (num > 2 )

num = ;

TCNT1 = 61630 ; //Начальное значение таймера

int main (void )

DDRD |= (1 << PD0 ) | (1 << PD1 ) | (1 << PD2 ) ;

TCCR1B |= (1 << CS12 ) | (1 << CS10 ) ; //Предделитель = 1024

TIMSK |= (1 << TOIE1 ) ; //Разрешить прерывание по переполнению таймера 1

TCNT1 = 61630 ; //Начальное значение таймера

sei () ; //Разрешить прерывания

while (1 )

//Основной цикл программы, он пуст, так как вся работа в прерывании

Код на ASM :

Assembly (x86)

Include "m8def.inc" rjmp start .org OVF1addr rjmp TIM1_OVF start: ldi R16,LOW(RamEnd) out SPL,R16 ldi R16,HIGH(RamEnd) out SPH,R16 ldi R16,1 ldi R17,0b00000111 out DDRD,R17 ldi R17,0b00000101 out TCCR1B,R17 ldi R17,0b11110000 out TCNT1H,R17 ldi R17,0b10111110 out TCNT1l,R17 ldi R17,0b00000100 out TIMSK,R17 sei main_loop: nop rjmp main_loop TIM1_OVF: out PORTD,R16 lsl R16 cpi R16,8 brlo label_1 ldi R16,1 label_1: ldi R17,0b10111110 out TCNT1L,R17 ldi R17,0b11110000 out TCNT1H,R17 reti

Include "m8def.inc"

Rjmp start

Org OVF 1addr

Rjmp TIM 1_ OVF

start :

Ldi R 16, LOW (RamEnd )

Out SPL , R 16

Ldi R 16, HIGH (RamEnd )

Out SPH , R 16

Ldi R 16, 1

Ldi R 17, 0b00000111

Out DDRD , R 17

Ldi R 17, 0b00000101

Out TCCR 1B , R 17

Ldi R 17, 0b11110000

Out TCNT 1H , R 17

Ldi R 17, 0b10111110

Рассмотрим, как сделать таймер своими руками на микроконтроллере ATmega8, хотя код довольно просто адаптировать и для МК AVR других серий. Электронный таймер нужное устройство во всех областях, где требуется выполнение определенных действий через конкретный промежуток времени.

Управление таймера состоит всего из четырех кнопок:

— увеличение значения числа;

— уменьшение значения числа;

— старт таймера;

— сброс таймера.

В качестве индикатора срабатывания таймера применяется генератор звуковой частоты с динамиком. Генератор будет запускаться с помощью транзисторного ключа Q5, который в свою очередь открывается положительным потенциалом, поступающим из порта PC2 микроконтроллера.

Упрощенно таймер работает следующим образом. Кнопками «+» и «-» устанавливается требуемое количество секунд; кнопкой «старт» запускается таймер. Когда таймер отсчитает до нуля, на выводе PC2 микроконтроллера ATmega8 появится высокий потенциал, который откроет Q5. Далее транзисторный ключ запустит генератор и раздастся звук в динамике. Сброс таймера осуществляется при нажатии кнопки «сброс». Генератор звуковой частоты собран на двух транзисторах Q6 и Q7 разный полупроводниковых структур. С принципом работы и описанием схемы подобных генераторов можно ознакомиться, перейдя по .

Алгоритм работы таймера на микроконтроллере

Наш таймер будет отсчитывать обратное время ровно по одной секунде, хотя можно задать и любое другое время, например минуты, часы, сотые секунды и т.п.

Для формирования интервала времени в одну секунду мы воспользуемся первым таймер-счетчиком микроконтроллера ATmega8. Все его настройки мы определим в функцию start . Сначала разделим рабочую частоту микроконтроллера 1000000 Гц на 64 и получим новую частоту 15625 Гц. За это отвечают бит CS10, CS11 и CS12 регистра TCCR1B. Далее разрешаем прерывание по совпадению и в регистр сравнения (старший и младший) записываем двоичное число равное десятичному 15625. Затем обнуляем счетный регистр TCNT1 и устанавливаем в единицу бит WGM12 регистра TCCR1B, что вызывает сброс счетного регистра при совпадении текущего его значения с числом, записанным в регистры сравнения.

void start (void)

TCCR1B &= ~(1<

TCCR1B |= (1<

TIMSK |= (1<

OCR1AH = 0b00111101;

OCR1AL = 0b000001001; // регистр сравнения 15625

TCNT1 = 0;

TCCR1B |= (1<

Когда таймер отсчитает ровно одну секунду – вызовется прерывание. В теле функции прерывания мы будем снижать значение переменной на единицу. При достижении нуля на второй выход порта C микроконтроллера появится высокий потенциал, который откроет транзисторный ключ и запустит генератор, в результате чего мы услышим звук в динамике.

ISR (TIMER1_COMPA_vect)

Z—;

mob_info