Датчик света своими руками: схема. Датчик включения света. Как работает и подключается датчик света с фотореле для сумеречного выключателя Для изготовления понадобится всего два инструмента

Датчики света на сегодняшний день являются довольно распространенными. По своим конструктивным параметрам они сильно различаются. В первую очередь это связано с тем, что фотоэлементов имеется на рынке немало. При этом существует множество моделей с разными типами адаптеров. Однако чтобы более подробно разобраться в этом вопросе, следует изучить структуру данных устройств. Только после этого можно будет приступать непосредственно к сборке датчика для света.

Классическая схема устройства

Самая стандартная схема датчика для света включает в себя фотоэлемент. При этом адаптеры часто используются нелинейные. Однако линейные модификации также являются на сегодняшний день востребованными. Еще в схеме стандартного датчика света имеются конденсаторы различной емкости. Располагаться они могут в последовательном либо параллельном порядке. Непосредственно для ламп устанавливаются патроны разного диаметра. Системы платы чаще всего имеются многоканального типа.

Модель с магнитным фотоэлементом

С магнитным фотоэлементом датчик света (схема показана ниже) больше всего подходит для закрытых помещений. При этом на улице модель можно использовать только при плюсовой температуре. Для того чтобы собрать датчик света своими руками, лампу целесообразнее использовать на 5 В. При этом патрон можно отдельно для устройства приобрести в магазине. Следующим шагом необходимо заняться непосредственно установкой фотоэлемента.

Корпус для этих целей нужно использовать пластиковый. После установки фотоэлемента для передачи сигнала монтируется кардиодный проводник. Емкость данного элемента не должна превышать 3 пФ. В противном случае лампа накаливания может не выдержать большой нагрузки. Непосредственно подключение к сети 220 В осуществляется по первой фазе. Для этого необходимо замыкать только верхние контакты. Проводник в данном случае можно использовать с маркировкой РР20.

Применение широкополосных фотоэлементов

Собирается данного типа датчик света нелегко. В первую очередь необходимо найти хороший фотоэлемент. Для его установки потребуется прочный корпус. Дополнительно следует отметить, что он обязан быть герметичным, поскольку вышеуказанный фотоэлемент плохо переносит повышенную влажность. Использовать его при минусовых температурах также не рекомендуется. Однако в закрытых помещениях он способен сослужить хорошую службу. Конденсаторы для него чаще всего используются интегральные. По емкости они различаются. В данном случае многое зависит от выбранной лампы накаливания.

Если рассматривать вариант на 5 В, то конденсаторы в такой ситуации можно использовать на 15 пФ. При этом подключение датчика света к сети должно осуществляться через переходник. Для регулировки мощности устройства часто используются управленческие платы. На сегодняшний день большим спросом пользуются многоканальные модели. Для того чтобы подключить датчик включения света к сети 220 В, без вспомогательного адаптера не обойтись.

Датчик на дипольных резисторах

На дипольных резисторах датчик света для освещения является широко распространенным. Фотоэлементы у моделей устанавливаются в основном спектрального типа. Для улицы такой вариант подходит идеально. Использоваться он способен эффективно даже при температуре -20 градусов. При этом замыкание резисторов происходить не будет. В данном случае конденсатор потребуется для монтажа только один. Подбирать его необходимо открытого либо закрытого типа. Однако емкость конденсатора не должна превышать 5 пФ.

Усилители в таком устройстве применяются довольно редко. Гораздо лучше для управления устанавливать обычные контроллеры. Контактные системы для подключения подбираются однофазные. Однако в данной ситуации необходимо в первую очередь взглянуть на распределительный щит. Только после этого появится возможность определиться с переходником, чтобы лампочка не сгорела.

Датчик на волновых конденсаторах

Данного типа датчик света собрать можно, если приготовить магнитный фотоэлемент. Резисторы для модели больше всего подходят диодные, а емкость их обязана составлять не менее 30 пФ. По чувствительности датчики указанного типа существенно различаются. Усилители при этом устанавливаются средней мощности. Модуляторы для устройства подходят больше интегрального типа. В этом случае параметр чувствительности будет находиться на уровне 22 мк. Также следует отметить, что диффузор в данном случае можно подсоединить напрямую через блок питания.

Использование селективных конденсаторов

Данного типа датчик света отличается повышенной чувствительностью. Для улицы эти устройства не подходят. Однако многое зависит от типа фотоэлемента. Если рассматривать интегральные модификации, то они повышенной влажности не боятся. Также они являются нечувствительными к минусовой температуре, и в холод устройства использовать можно. Резисторы чаще всего устанавливаются открытого типа.

При этом управленческие платы подходят самые разнообразные. Для того чтобы самостоятельно собрать модель, переходники целесообразнее подбирать со вспомогательными адаптерами. Подключение датчика света осуществляется через первую фазу. При этом контакты необходимо крепить в первую очередь сверху. Для того чтобы проверить заземление, нужно воспользоваться тестером.

Сверхчувствительные датчики для света

Сверхчувствительный датчик включения света для закрытых помещений подходит хорошо. Чаще всего модели устанавливают в офисных зданиях. Таким образом, на электричестве можно сэкономить довольно много. Для того чтобы самостоятельно сложить сверхчувствительную модификацию, фотоэлемент лучше приобрести магнитного типа. Резисторы целесообразнее подбирать с высоким параметром проводимости.

В данном случае переходник можно использовать самый простой. При этом усилители, как правило, не применяются. Для подключения датчика потребуется вспомогательный адаптер. Как правило, он используется на два контакта. Чтобы сбои в системе происходили как можно реже, многие специалисты рекомендуют использовать модули сопротивления. Найти их в магазине, как правило, можно с пометкой 10 Ом.

Модификации с пониженной чувствительностью

Данного типа датчик света специально создан для использования в суровых погодных условиях. В среднем модели способны выдерживать температуру до -20 градусов. Фотоэлементы у них устанавливаются исключительно интегральные. Отличаются они тем, что повышенной влажности практически не боятся. При этом небольшие механические повреждения способны выдерживать.

Про магнитные аналоги такого не скажешь. Для того чтобы самостоятельно собрать датчик света (уличный), потребуется высокоемкостный конденсатор. Дополнительно для стабильной работы применяются маломощные резисторы. Контроллеры для датчика устанавливать можно самые разнообразные.

Модификации с мембранным усилителем

Собрать датчик с мембранным усилителем можно довольно просто. Если рассматривать самую простую модификацию, то лампу целесообразнее подбирать на 5 В. При этом патрон в диаметре должен составлять 4.5 см. После закрепления фотоэлемента необходимо зафиксировать резистор. Если рассматривать модель без управленческой платы, то усилитель должен устанавливаться возле выходного переключателя. При этом соединение обязано осуществляться через переходник с изоляцией.

Если рассматривать модель с управленческой платой, то в первую очередь важно припаять к фотоэлементу вспомогательный адаптер при помощи паяльной лампы. Только после этого к системе подсоединяется переключатель с контактами. Проводники в данном случае нужно вывести на сторону и изолировать, чтобы исключить случаи коротких замыканий.

Автоматические помощники в электронной начинке автомобиля сегодня охватывают практически все функции его управления. Это в большей мере относится к системам обеспечения безопасности, но с появлением сенсорных чувствительных элементов охват интеллектуальных ассистентов значительно расширился. Так, все популярнее становится датчик света в автомобиле. Что это за устройство? Это своего рода детектор, который фиксирует пороговые значения освещения, при которых оптика может автоматически включаться или отключаться. В более развитых системах датчик также способен отслеживать условия освещенности в промежуточных состояниях, точнее настраивая автомобильное оборудование.

Что представляет собой датчик света?

Устройство датчика можно разделить на две части - это типовая электротехническая инфраструктура, благодаря которой устройство подключается к реле управления оптикой, и чувствительный компонент. Подключение к реле дает возможность датчику оперативно взаимодействовать с автомобильными огнями, своевременно активизируя их функцию. Главный же элемент прибора - это непосредственно детектор в виде фотоэлемента, реагирующего на параметры освещения. Наиболее распространен автономный датчик света в машине. Как работает эта модификация? Ее особенность заключается в независимости от основной электросети. То есть сигнал на реле поступает даже в случае сбоев на магистральной проводке. Разумеется, о гарантии работоспособности данной схемы можно говорить только при условии стабильного функционирования самой оптики и управляющего контроллера.

Принцип работы устройства

В процессе движения автомобиля датчик постоянно контролирует вверенную ему зону, оценивая параметры освещенности. Обычно это элементарная яркость света, на которую и реагируют фотоэлементы. При достижении предельных значений датчик посылает сигнал на вышеупомянутое реле. В свою очередь, контроллер дает команду оптике включиться или, наоборот, отключиться. Важно подчеркнуть, что система действует не только на включение. Такие системы относятся к средствам активной безопасности, поэтому активизация света в темном переулке, к примеру, является ключевой задачей устройства. Но также при фиксации пороговых значений яркости прибор отключает оптику. Стоит отметить и особенности обработки сигнала, который посылает датчик света в автомобиле. Как работает в этой схеме управляющий блок? Изначально микросхема программируется на работу по нескольким каналам, связанным с определенной оптикой - огнями, фарами, «противотуманками» и т. д. Также и датчики отвечают за конкретные зоны, условно связанные с этими каналами. Таким образом, в каждом случае задействуется та или иная группа оптических приборов машины.

Зоны охвата

Базовое разделение предполагает обработку сигналов от двух зон охвата. В первую очередь, это глобальная зона. Она относится к пространству непосредственно у автомобиля. Вторая зона - передняя. Она распространяется на участок дороги перед машиной. Современные модели датчиков способны различать эти зоны, посылая на реле соответствующие сигналы. Казалось бы, если в текущих условиях наблюдается пониженный уровень освещения, то активизироваться должны оптические устройства, соответствующие условиям движения. Но разница как раз заключается в особенностях работы ближних и дальних фар, за которые отвечает датчик света в автомобиле. Что это разделение значит на практике? В условиях отсутствия видимости активизироваться должны дальние фары, а днем - ходовые огни с ближним светом. Однако пограничные состояния между этими условиями освещенности не всегда доступны для фиксации электроникой. Поэтому желательно, чтобы в датчике предусматривалась и возможность отслеживания промежуточных характеристик освещенности.

Настройки датчика

Отчасти задачу разделения пограничных показаний освещенности можно решить с помощью базовых настроек. Как правило, предусматривается два режима эксплуатации устройства:

  • В сумерках. Свет активизируется при наступлении сумерек, когда ночь еще не наступила, но уже наглядно темнеет.
  • Ночью. Датчик включает фары при наступлении полной темноты.

В некоторых конфигурациях предусматривается и конкретное назначение фар, которые при тех или иных условиях включает датчик света в автомобиле. Что это такое с точки зрения обработки сигнала электроникой? Это программные параметры, которые логически обрабатываются в тех или иных условиях. Например, в первом режиме все еще будет работать ближний свет, а во втором - происходит активизация дальних фар.

Специальные версии датчика

Существуют модели датчиков, которые также отвечают за регуляцию света в салоне. В частности, они не просто включают, но и управляют параметрами яркости приборной панели. Собственно, вторая функция и является первостепенной, так как во время движения панель в любом случае работает. Но в таких системах при сильной нагрузке сигналами на реле возможны проблемы. Так, по словам пользователей, датчик света в автомобиле «Киа Рио» грешит некорректным управлением подсветкой той же приборной панели. Например, ночью система вполне оправдано активизирует работу дальнего света, но в салоне подсветка может включаться с максимальной яркостью, что доставляет водителю дискомфорт. Чаще всего подобные проблемы возникают из-за нарушений соединения проводки или ее повреждения - падает сопротивление, в результате чего и сигналы поступают неточные.

Монтаж своими руками

В первую очередь определяются места установки. Их может быть два - или за зеркалом заднего вида в зоне лобового стекла, или же на передней панели - тоже возле лобового стекла. В обоих случаях важно организовать свободное не прикрытое пространство, в котором будет работать датчик света в автомобиле. Своими руками выполнить монтаж несложно - в работе участвуют комплектные крепежные приспособления. В некоторых случаях достаточно выполнить клеевое крепление, а в других - реализовать механическую фиксацию метизами.

Отдельного внимания заслуживает проводка. Кабель желательно как можно короче делать на видимом месте и по возможности сразу от датчика заводить за приборную панель. Селектор станет конечным пунктом, к которому напрямую подсоединяется датчик света в автомобиле. Что это такое в схеме соединения детектора с реле управления? Селектор - это переходное звено, которое выполняет своего рода предобработку сигнала. Он может корректировать его параметры, определять те же каналы групп оптики и устранять помехи.

Заключение

Присутствие автоматического регулятора света вовсе не стоит воспринимать как гарантию безопасности - хоть и в одном аспекте управления. Есть и опасности, которые может нести собой датчик света в автомобиле. Что это значит для автомобилиста? Электроника в виде автоматических ассистентов дает ощущение стороннего контроля, но это впечатление обманчиво. Действительно, в большинстве случаев такие датчики оказываются полезными, но есть также и риск выхода электроники из строя. И тогда несвоевременное включение фар может обернуться трагедией. Стоит ли из-за этого риска отказываться от датчика света? Пожалуй, нет, но полагаться только на его функцию в управлении оптикой уж точно не следует.

При вождении автомобиля в темное время суток возникает необходимость хорошего освещения дороги на достаточно длинную дистанцию. Но если по встречной полосе едет автомобиль с включенными фарами, то он ослепляет водителя встречного направления.

Этот эффект ослепления является одной из главных проблем езды в темное время. Для того чтобы избежать ослепления лампочки фар имеют две нити накала, причем вторая расположена так, чтобы свет распространялся вниз и в сторону от уровня глаз водителя встречного автомобиля. На практике, обычно водитель вручную переключает дальний и ближний свет механическим переключателем. Однако это очень неудобно для водителя, особенно в часы пик.

Наш проект “Адаптивная система освещения для автомобилей”(АСО) это умное решение для безопасного и удобного ночного вождения без интенсивного ослепляющего эффекта.

Адаптивная система не требует ручного переключения “ближний/дальний” при приближении встречного автомобиля. Система сама определяет есть ли свет от встречного автомобиля и переключает на ближний свет, а затем, после прохождения мимо, снова на дальний. Пользователь может настроить чувствительность системы.

Отличительные особенности системы

  • Питание от 12 В аккумуляторной батареи автомобиля, с пренебрежительно малым потреблением в ждущем режиме.
  • Надежный и защищенный от атмосферных явлений модуль оптического датчика (фотоэлемент CDS).
  • Независимый регулируемый контроль, для установки параметра“чувствительность определения света”, чтобы избежать ложных срабатываний, вызванных влиянием других источников света, таких как уличные фонари.
  • Дополнительный селекторный выключатель для “ режима автоматической сигнализации”(ASM). В этом режиме фары переходят в пульсирующий режим, т.е. ритмично переключают ближний свет на дальний и наоборот (аналогично тому как водители сигналят светом друг другу).
  • “Режим энергосбережения”- Если схема находится в активном режиме, по умолчанию, фары автоматически выключаются при въезде на хорошо освещенную территорию.

Эффект Трокслера

Исследования д-ра Алана Льюиса, который работает в колледже оптометрии при государственном университете в Биг Рапидс, штат Мичиган, обнаружил, что во время ночного вождения, свет от фар транспортных средств, может стать причиной ослепления.

Даже после окончания воздействия яркого света на сетчатке глаза остается его изображение, что создает слепое пятно. Это явление, известное как эффекта Трокслера, увеличивает время реакции водителя до 1,4 секунды.

Это означает, что, при скорости 60 миль в час (примерно 96.5км/час), водитель проедет 123 фута (37.5 м), прежде чем среагирует на опасность. В обычной ситуации время реакции на изменения в условиях вождения равно 0,5 сек, а расстояние, пройденное до торможения, составляет 41 фут (12.5 м), при той же скорости движения!

Функциональная блок-схема

Схема электрических соединений до переделки

Схема электрических соединений при подключении АСО

Принципиальная электрическая схема

Перечень компонентов

  • Микросхема: NE555 – 1
  • 8-ми контактная панелька для МС – 1
  • Транзистор: BC547 – 1
  • Диод: 1N4007 – 2
  • Резисторы: 100кОм подстроечный – 1; 47кОм 0.25 Вт – 1; 22кОм 0.25 Вт – 1; 10кОм 0.25Вт– 1; 1кОм 0.25 Вт – 2
  • Конденсаторы: 10мкФ/25В – 1; 100мкФ/25В – 1
  • Светодиоды: 5мм красный и зеленый – 2
  • LDR: фотоэлемент 20мм капсульного типа – 1
  • Реле: 12В постоянного тока – 1
  • Выключатель: переключатель со средней точкой (SPST)– 2

Работа схемы

Схема построена на популярной микросхеме NE555 (IC1). Здесь IC1 включена по схеме автоколебательного мультивибратора запускаемого по триггерному входу (вывод2). Мультивибратор работает на частоте примерно 1.5 Гц (рабочий цикл 75%), которая определяется величиной компонентов R1,R 3и C1. Схема питается от 12В аккумулятора автомобиля.

  • В положении ВКЛ. переключателя S1 напряжение 12В поступает на схему через диод защиты от переполюсовки 1N4007 (D1). Конденсатор C3 (100мкФ/25В) буферный, для повышения стабильности схемы. При отсутствии света, датчик освещенности, состоящий из фотоэлемента (LDR), подстроечного резистора (Р1) и транзистора (Т1) запрещает работу мультивибратора (вывод 4 “сброс”). При этом на выходе IC1 (вывод3) “низкий” уровень сигнала и 12В реле (RL1) не срабатывает. Это состояние идицируется первым светодиодом (LED1). Поскольку нить накала дальнего света фар подключена к “+” через нормально замкнутые контакты реле, то в этом режиме они включены на дальний свет.
  • Когда на датчик освещенности попадает яркий свет, мультивибратор запускается и “высокий” уровень сигнала втягивает реле. Контакты реле переключают фары на ближний свет, до тех пор пока не изменится состояние датчика освещенности. Это состояние идицируется вторым светодиодом (LED2). Переключателем S2 задается режим автоматической сигнализации (ASM). В положении ВКЛ выводы 2 и 6 IC1 соединяются с “землей” и, следовательно, автоколебательный режим мультивибратора отключен. При S2 в положении ВЫКЛ функция ASM включается и начинается быстрое переключение ближний/дальний, пока на датчик освещенности попадает яркий свет от встречного автомобиля.

Примечание

  • Контакты реле RL1 можно соединить параллельно штатным контактам селекторного переключателя ближний/дальний. Также возможна подача +12В на нити накала ближнего и дальнего света через контакты реле.
  • Рекомендуется использовать один 20мм датчик, закрепленный в соответствующей позиции в передней части автомобиля.

Описывалось создание датчика реагирующего на свет и приводились примеры схем управления маломощным электродвигателем и светодиодом. Более полезным было бы управление какой либо мощной нагрузкой например: лампой накаливания, мощным электродвигателем и т.д. Простая схема фотореле для мощной нагрузки приведена на рисунке 1:

Рисунок 1 - Фотореле срабатывающее при уменьшении освещённости

без регулировки чувствительности

В этой схеме используется электромагнитное контактное реле. Самым простым дешёвым и доступным способом управления мощной нагрузкой является использование электромагнитного контактного реле:

Реле показанное на фотографии выше извлечено из сломанного импортного холодильника, это реле может коммутировать (подключать и отключать в данном случае) нагрузку потребляющую ток не более 16А. 16А вполне достаточно для многих бытовых электроприборов. На корпусе этого реле написано что для катушки постоянного тока необходимо 12 В но на практике для срабатывания данного реле было достаточно 9В с блока питания для модема с выпрямителем:

Если 9В окажется недостаточно то можно запитать схему от 12В. Если заменить резистор R1 переменным или подстроечным то можно будет регулировать чувствительность к свету.

Обратный ток данного фотодиода усиливается транзистором VT1:

Данный транзистор образует делитель напряжения вместе с резистором R1:

Как было упомянуто выше данный резистор можно заменить переменным или подстроечным для того чтобы можно было регулировать чувствительность схемы.

Непосредственное управление катушкой реле осуществляет транзистор VT2:


КТ973 хорошо подходит для данной цели. Реле подключается к коллектору данного транзистора.

Для того чтобы транзистор VT2 не перегорел при резком его закрытии параллельно катушке реле ставится обратный диод:

Данный диод можно заменить каким либо другим подходящим диодом.

Резистор R2 не обязателен но его можно поставить для ограничения тока или уменьшения его потребления.

Для силовой части схемы нужны разъёмы и провода:

Реле может подключать нагрузку к сети 220В. Не стоит забывать о том что напряжение сети опасно и при работе с ним необходимо соблюдать меры предосторожности для того чтобы не получить поражение электрическим током.

После подготовки всех необходимых деталей можно приступать к сборке реле.

Обратный диод лучше подпаять сразу к реле.

К собранному реле можно подключать нагрузку с источником питания (не обязательно сеть 220В). Используя данное фотореле в паре с источником инфракрасного излучения можно сделать датчик присутствия:

Если направить инфракрасный свет на фотодиод фотореле то при перекрытии этого света реле будет срабатывать и замыкать источник питания на нагрузку, таким образом можно вызвать некоторое действие при пересечении кем либо (или чем либо) инфракрасного луча. Для того чтобы включение нагрузки происходило при увеличении освещения можно использовать реле с нормально замкнутыми контактами. Для того чтобы включать (или выключать) несколько нагрузок можно использовать реле с несколькими контактами. Также для того чтобы включение нагрузки происходило при увеличении освещения можно использовать схему на рисунке 3:

Рисунок 2 - Схема включающая нагрузку при увеличении освещения

Если фотореле включает лампу накаливания при уменьшении освещенности то необходимо как нибудь закрыть фотодиод от света лампы накаливания иначе при уменьшении освещенности реле начнёт часто включаться и выключаться что приведёт к быстрому его износу и выходу из строя. Если используется инфракрасный фотодиод то фотореле не будет реагировать на свет лампы дневного света (если не поднести её достаточно близко) или светодиодной лампу (если в ней нет инфракрасных светодиодов с соответствующей длинной волны излучаемого света). Пульт ик-управления лучше не испытывать на данном фотореле:


Все знакомы с садовыми светильниками, которые заряжаются от солнечной батарейки в течение дня, а вечером автоматически включаются. В них установлен специальный сенсор, который высчитывает освещение на улице и как только наступает вечер, он включает светодиод. В этом обзоре предлагаем инструкцию по изготовлению аналогичного сенсора своими руками .

Для изготовления сенсора, нам понадобится:
- 2 резистора на 470 Ом;
- 2 резистора на 10 кОм;
- фоторезистор;
- потенциометр на 470 Ом;
- светодиодная лампочка;
- операционный усилитель LM741;
- восьмиконтактная DIP панель;
- монтажная плата.


Начать следует с монтажной платы. Вырезаем небольшой кусок шириной 9 точек и длиной 13.




Далее берем резисторы на 470 Ом. Вставляем их на самую верхнюю полосу на деление 2 и 5.




Загибаем их друг к другу так, чтобы между ними осталось одно деление.


Теперь берем потенциометр и вставляем двумя контактами вплотную к резисторам, установленным ранее. Паяем контакты.


Далее берем DIP панель. На свободный контакт потенциометра подключаем третий пин панели.


Паяем панель на плату.


Далее берем резистор на 10 кОм и фоторезистор. Резистор нужно подключить на пин номер 2 и к минусу. Держа плату резисторами на 470 Ом вниз, минус будет располагаться в правой стороне.


На тот же пин номер 2 подключаем фоторезистор, который на этот раз должен также пойти к плюсу.


Теперь четвертый пин подключаем на минус. А седьмой, или второй сверху на плюс.


В конце остается подключить к плате то, что будет включаться. В нашем случае это светодиодная лампочка, которую нужно подключить на шестой пин.

Когда сборка закончена, можно вставить LM741, на котором, кстати, есть обозначающая точка, которой нужно вставить в сторону плюса.

Наш сенсор готов. Фоторезистор измеряет освещаемость. Как только оно падает ниже определенного уровня, загорается светодиодная лампочка. Уровень освещения можно регулировать при помощи потенциометра. Если же нужно включать что-то помощнее, то вместо светодиода можно поставить какой-нибудь транзистор.

mob_info